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anregende Gespräche und die intensive Betreuung, nicht nur während dieser Master-

arbeit, sehr bedanken.

Außerdem bedanke ich mich bei Prof. Michael Joachim für die Übernahme der Zweit-
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iii





1 Introduction

The main goal of this thesis is to show that the spaces of metrics of positive scalar

curvature R+(M) and R+(N) are homotopy equivalent, if N is obtained from M by

surgery in codimension of at least 3 and dimension of at least 2. This result is originally

due to Chernysh [3] and has been first published by Walsh [15].

Using this, one can also derive the spin cobordism invariance of R+(M). This can

be done by making the cobordism 2-connected (this requires a spin cobordism) and

then using handle cancellation and the h-cobordism theorem to deduce that one of

the boundaries of the cobordism can be obtained from the other one by surgeries that

meet our dimension requirements (see [6] & [13]).

In chapter 2 we prepare the proof of the main theorems. We first establish a notation

for this thesis and define scalar curvature. Afterwards we define a topology on the space

of maps between manifolds and show some basic properties of this topology. After

defining the space of metrics R(M), the space of metrics of positive scalar curvature

(psc metrics) R+(M) and the space of standard metrics R+
0 (M), the last part of this

chapter will be the proof that isotopic metrics are concordant.

The 3rd chapter will consist of the proof of the originial Gromov-Lawson surgery

theorem. We will first explain the geometric idea of the proof and then describe the

bending argument. Here we will do a detailed computation of the scalar curvature

formula which will show that there is a slight mistake in the curvature formula from

[6], [13] and [14].

In chapter 4 we will describe the Gromov-Lawson-Chernysh-deformation, which

takes a given metric and deforms it into a standard metric. This will be the main tool

to prove the homotopy equivalence described above. It has, however, one flaw: It is

not constant on standard metrics, i.e. it cannot be guaranteed that a standard metric

remains standard during the deformation.

Therefore we will take a look at warped product metrics in the disc. Here, the main

goal is to deform a warped metric into a local torpedo metric, i.e. we want to deform

it so that it has a certain standard form inside a small disc.

Chapter 6 will be all about putting the pieces together. We will show that the space

of standard metricsR+
0 (M) is a weak deformation retract of the space of locally warped

metrics W (N, τ) and then use the Gromov-Lawson-Chernysh-deformation to show

homotopy equivalence of W (N, τ) and R+(M). Surgery invariance of the homotopy

type of R+(M) will then come as an easy corollary.
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2 Preliminaries

In the first part of this chapter (2.1-2.5) we introduce notation in order to compute the

curvature of manifolds. For a more detailed introduction to differential geometry and

curvature, see [9]. In (2.6 & 2.9) we prove several lemmata that will prepare the proof

of the Gromov-Lawson surgery theorem. In (2.7) we define a topology on spaces

of mappings between manifolds. This is necessary, as we want to prove topological

properties of the space of Riemannian metrics. Subsequently in (2.8) we will define

this space and also the space of standard metrics.

2.1 Tensors

2.1.1 Tensors on vector spaces

Details for this section can be found in [9, chapter 2, pp. 11-14].

Let V be an n dimensional vector space.

Definition 2.1. A multilinear map

F : V ∗ × · · · × V ∗︸ ︷︷ ︸
l copies

×V × · · · × V︸ ︷︷ ︸
k copies

→ R

is called a (k, l)-tensor or k-covariant, l-contravariant tensor on V . The space of (k, l)-

tensors on V will be denoted by T kl (V ).

Lemma 2.2 ([9, p. 12]). T kl+1(V ) is isomorphic to
{
F : V ∗ × ..× V ∗︸ ︷︷ ︸

l

×V × ..× V︸ ︷︷ ︸
k

→

V multilinear
}

. As a special case, we deduce T 1
1 (V ) ∼= End(V ).

Definition 2.3. The trace of a (1, 1)-tensors A is defined as

tr(A) =

n∑
i=1

A(ei, ei),

where (ei) is a basis of V and (ei) is the dual basis of V ∗.

Using this, one can define the trace as a map

tr : T k+1
l+1 (V ) → T kl (V )

A 7→
(

(ω1, . . . , ωl, V1, . . . , Vk) 7→ tr
(
A(ω1, . . . , ωl, ·, V1, . . . , Vk, ·)︸ ︷︷ ︸(

1
1

)
-tensor

))
.

3



4 2 Preliminaries

Lemma 2.4. There is a natural product, called the tensor product:

⊗ : T kl (V )× T pq (V ) → T k+p
l+q (V )

(F,G) 7→ F ⊗G

F ⊗G
(
ω1, . . . , ωl+q, X1, . . . , Xk+p

)
:= F (ω1, . . . , ωl, X1, . . . , Xk)G(ωl+1, . . .

. . . , ωl+q, Xk+1, . . . , Xk+p).

2.1.2 Tensors on vector bundles

Details for this section can be found in [9, chapter 2, pp. 16-21].

Let M be a smooth manifold, TpM its tangent space and TM its tangent bundle.

Definition 2.5.

T kl M :=
∐
p∈M

T kl (TpM)

T kl (M) := Γ(M,T kl M) =
{
f : M → T kl M smooth

}
.

T kl (M) is called the space of (k, l)-tensor fields. In particular, one sees that T 1(M)

is the space of forms and T1(M) =: T (M) is canonically isomorphic to the space of

vector fields.

The trace and the tensor product for tensor fields are defined in analogy to (2.3)

and (2.4):

tr : T k+1
l+1 (M)→ T kl (M)

⊗ : T kl (V )× T pq (V )→ T k+p
l+q (V ).

Lemma 2.6 ([9, p. 21]). Any (k, l)-tensor field F is multilinear over C∞(M) (which

will be called C∞-multilinear), i.e.

F (. . . , fα+ gβ, . . . ) = fF (. . . , α, . . . ) + gF (. . . , β, . . . )

for all f, g ∈ C∞(M).

F induces a C∞-multilinear map

F̃ : T 1(M)× · · · × T 1(M)︸ ︷︷ ︸
l

×T (M)× · · · × T (M)︸ ︷︷ ︸
k

→ C∞(M).

Lemma 2.7 (Tensor Characterization Lemma, [9, p. 21]). A map

F̃ : T 1(M)× · · · × T 1(M)× T (M)× · · · × T (M)→ C∞(M)

is induced by a (k, l)-tensor field F , if and only if it is C∞-multilinear. Similarly, a

map

F̃ : T 1(M)× · · · × T 1(M)︸ ︷︷ ︸
l

×T (M)× · · · × T (M)︸ ︷︷ ︸
k

→ T (M)

is induced by a (k, l + 1)-tensor field F , if and only if it is C∞-multilinear.
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2.2 Riemannian metrics

Details for this section can be found in [9, chapter 3, pp. 23-29].

Let M be a smooth manifold.

Definition 2.8. A Riemannian metric on M is a (2, 0)-tensor field g ∈ T 2M , such

that:

1. g is symmetric, i.e. g(X,Y ) = g(Y,X)

2. g is positive definite, i.e. g(X,X) ≥ 0 and g(X,X) = 0 ⇐⇒ X = 0.

A manifold M together with a Riemannian metric g is called a Riemannian manifold.

If (M, g) and (N,h) are Riemannian manifolds, M ×N has a natural metric k = g+h,

called the product metric, defined by

k(X1 +X2, Y1 + Y2) = g(X1, Y1) + h(X2, Y2).

For a map α : N →M , the pullback α∗g is defined by

α∗g(X,Y ) := g
(
Dα(X), Dα(Y )

)
,

where Dα is the differential of α.

A diffeomorphism φ : (M, g)→ (N,h) is called an isometry, if φ∗h = g.

From now on (M, g) is an n-dimensional Riemannian manifold.

Definition 2.9. The musical isomorphism [ is defined by

[ : TM → T ∗M

X 7→
(
Y 7→ g(X,Y )

)
.

In local coordinates (∂1, . . . , ∂n), dual coordinates (dx1, . . . , dxn) and g = (gij) we get:

X[ = g(
∑
i

Xi∂i, ·) =
∑
i,j

gijX
idxj .

Since [ is an isomorphism, we get its inverse map

] : T ∗M → TM

given by

ω] =
∑
i,j

gijωj∂i,

where gij are the coefficients of the inverse matrix g−1.

These two operators can also be applied to tensors of any rank:

[ : T k+1
l (M)→ T kl+1(M)

] : T kl+1(M)→ T k+1
l (M).
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Definition 2.10. The trace of a (k, 0) tensor h for k ≥ 2 is defined as

trgh := trh].

Then trgh is a (k − 2, 0) tensor given by:

trgh(X1, . . . , Xk−2) =
∑
i

h(∂i, X1, . . . , Xk−2, ∂i).

2.3 Connections

Details for this section can be found in [9, chapters 4 & 5, pp. 49-76]. In order to talk

about curvature on M , one has to define straight lines in M . If M = Rn, straight lines

should be given by curves with acceleration identically zero, i.e. curves with constant

first derivative. Connections give us a possibility of differentiating vector fields on a

manifold. Since the velocity of a curve is a vector field, we can use them to define

constant speed curves.

2.3.1 Connections on vector bundles

Definition 2.11. Let π : E →M be a vector bundle over a manifold M and let E(M)

denote the space of smooth sections of E.

A connection in E is a map

∇ : T (M)× E(M) → E(M)

(X,Y ) 7→ ∇XY

satisfying the following properties:

1. ∇XY is C∞-linear in X, i.e.

∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(M)

2. ∇XY is linear in Y , i.e.

∇X(aY1 + bY2) = a∇XY1 + b∇XY2 for a, b ∈ R

3. ∇ satisfies the Leibniz-rule (product rule):

∇X(fY ) = f∇XY +X(f)Y for f ∈ C∞(M).

∇XY will also be called the covariant derivative of Y in the direction of X.

Definition 2.12. A linear connection on a manifold M is a connection on TM .

Remark 2.13 ([9, p. 51]). A linear connection is not a tensor, as it is not C∞-

multilinear.
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Lemma 2.14 ([9, p. 51]). Let ∇ be a linear connection, and let X,Y ∈ T (U), such

that TM |U is trivializable on U ⊂ M and let (E1, . . . , En) be a local frame on U , i.e.

(E1, . . . , En) are everywhere linear independent vector fields. Let X =
∑
i
XiEi and

Y =
∑
i
Y iEi. Furthermore let Γkij be the Christoffel symbols, i.e. the smooth functions

satisfying:

∇EiEj =
∑
k

ΓkijEk.

∇ can be expressed in local coordinates as follows:

∇XY =
∑
k

(
X(Y k) +

∑
i,j

XiY jΓkij

)
Ek.

2.3.2 Connections on tensor bundles

Lemma 2.15 ([9, p.53]). Let ∇ be a linear connection on M .

There is a unique connection in each tensor bundle T kl M , also denoted by ∇, such that

the following conditions are satisfied:

1. On TM , ∇ agrees with the given connection

2. On T 0M = C∞(M), ∇ is given by ordinary differentiation, i.e.

∇Xf = X(f)

3. ∇ obeys the product rule with respect to tensor products, i.e.

∇X(F ⊗G) = (∇XF )⊗G+ F ⊗ (∇XG)

4. ∇ commutes with the trace, i.e.

∇X(trY ) = tr∇XY.

Let 〈., .〉 denote the pairing of a form and a vector field. ∇ then satisfies the following

two properties:

∇X〈ω, Y 〉 = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉

(∇XF )(ω1, . . . , ωl, Y1, . . . , Yk) = X(F (ω1, . . . , ωl, Y1, . . . , Yk)) +

−
∑
j

F (ω1, . . . ,∇Xωj , . . . , ωl, Y1, . . . , Yk)

−
∑
i

F (ω1, . . . , ωl, Y1, . . . ,∇XYi, . . . , Yk).

Lemma 2.16 ([9, p.54]). The map ∇F : T 1(M)× · · · × T 1(M)︸ ︷︷ ︸
l

×T (M)× · · · × T (M)︸ ︷︷ ︸
k+1

→

C∞(M) defined by

∇F (ω1, . . . , ωl, Y1, . . . , Yk, X) = ∇XF (ω1, . . . , ωl, Y1, . . . , Yk)

is a (k + 1, l)-tensor field.
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Lemma 2.17 ([9, p.57]). Let ∇ be a linear connection on M . For curve γ : I → M

let T (γ) denote the vector fields along γ, i.e. the space of smooth maps V : I → TM ,

such that V (t) ∈ Tγ(t)M

∇ determines a unique operator

Dt : T (γ)→ T (γ)

satisfying the following properties:

1. Dt is linear over R

2. Dt(fV ) = ḟV + fDtV for f ∈ C∞(I)

3. If Ṽ is any extension of V to a neighbourhood of γ(I),

DtV = ∇γ̇(t)Ṽ .

Dt(V ) is called the covariant derivative of V along γ.

2.3.3 Geodesics

Definition 2.18. A curve γ is called a geodesic, if Dtγ̇ = 0.

Remark 2.19. Dtγ̇ is the acceleration of γ along γ. Therefore, a geodesic is a curve

with vanishing acceleration.

Theorem 2.20 ([9, p.58]). Let M be a manifold with a linear connection. For any

p ∈ M , V ∈ TpM and t0 ∈ R, there exists an open interval I ⊂ R, containing t0 and

a geodesic γV : I →M , such that γV (t0) = p and γ̇V (t0) = V . Any two such geodesics

agree on their common domain.

2.3.4 The Levi-Civita connection

Lemma 2.21 ([9, p.67]). The following conditions are equivalent for a linear connec-

tion ∇ on a Riemannian manifold (M, g):

1. ∇ is compatible with g, i.e. for all X,Y, Z ∈ T (M)

∇Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ)

2. ∇g = 0

3. If V,W are vector fields along any curve γ,

d

dt
g(V,W ) = g(DtV,W ) + g(V,DtW ).
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Theorem 2.22 (Fundamental Lemma of Riemannian Geometry, [9, p.68]). Let

(M, g) be a Riemannian manifold.

Then there exists a unique linear connection ∇ on M , called the Levi-Civita connection

being compatible with g and symmetric, i.e. ∇XY −∇YX ≡ [X,Y ], where [ , ] denotes

the Lie bracket:

[X,Y ] = X(Y )− Y (X).

In local coordinates, the Christoffel symbols of the Levi-Civita connection are given by:

Γkij =
1

2

∑
l

gkl
(∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
,

where gij are the components of the inverse matrix g−1.

2.3.5 The exponential map

Definition 2.23.

E :=
{
V ∈ TM : γV is defined on an interval containing [0, 1]

}
.

The exponential map exp: E →M is defined as follows:

exp(V ) := γV (1).

Lemma 2.24 ([9, p.76]). For any p ∈M , there is a neighbourhood V of the origin in

TpM , such that exp : V → exp(V) is a diffeomorphism.

The exponential map allows us to talk about distances on M . If ε > 0 is small

enough, we can transport B(0, ε) ⊂ TpM onto M . We write ‖x− y‖g for the distance

between x and y with respect to the metric g.

Definition 2.25. Let N ⊂M be a closed submanifold. The normal exponential map

exp⊥ : νNM → M is defined as the restriction of the exponential map to the normal

bundle.

Proposition 2.26. The normal exponential map is a local diffeomorphism.

Proof. The proof for the previous lemma in [9, p.76] reveals that the differential of

the exponential map on a single tangent space at the origin is the identity. Since

νNM
∼= N×TxN⊥ locally we get canonical identifications T(x,v)ν

N
M
∼= T(x,v)(N×TxN⊥) ∼=

TxN×TxN⊥ = TxM . So the differential is the same as the one of the usual exponential

map, i.e. it is the identity around the origin and thus the normal exponential map is

a local diffeomorphism, too.

2.4 Curvature

Details for this section can be found in [9, chapter 7, pp. 116-124].
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2.4.1 The curvature tensor

Definition 2.27. The map R : T (M)× T (M)× T (M)→ T (M) defined by

R(X,Y, Z) := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is called the (Riemann) curvature endomorphism.

Proposition 2.28 ([9, p.117]). The curvature endomorphism is a (3, 1)-tensor field,

i.e. it is C∞-multilinear.

Definition 2.29. The (Riemann) curvature tensor Rm ∈ T 4(M) is defined by

Rm
(
X,Y, Z,W

)
:= g

(
R(X,Y, Z),W

)
.

In other words: The curvature tensor is obtained from the curvature endomorphism

by applying the musical isomorphisms.

Proposition 2.30 ([9, p.121]).

Rm(X,Y, Z,W ) = −Rm(Y,X,Z,W )

Rm(X,Y, Z,W ) = −Rm(X,Y,W,Z)

Rm(X,Y, Z,W ) = Rm(Z,W,X, Y )

0 = Rm(X,Y, Z,W ) +Rm(Y,Z,X,W ) +Rm(Z,X, Y,W ).

2.4.2 Scalar curvature

Definition 2.31. The Ricci curvature Ric and the scalar curvature κ are defined by

Ric(X,Y ) = tr
(
Rm

)
(X,Y )

κ = tr(Ric) = tr
(
tr(Rm)

)
.

If (Ei) is an orthonormal local frame for TM , we get

Ric(X,Y ) =
∑
i

Rm
(
Ei, X, Y,Ei

) (2.30)
=

∑
i

Rm
(
X,Ei, Ei, Y

)
κ =

∑
i,j

Rm
(
Ej , Ei, Ei, Ej

)
.

Remark 2.32.

κ =
∑
i 6=j

Rm
(
Ej , Ei, Ei, Ej

)
= 2

∑
i<j

Rm
(
Ej , Ei, Ei, Ej

)
since Rm

(
Ei, Ei, Ei, Ei

)
= 0, which can be seen from (2.30).
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2.5 Riemannian submanifolds

Details for this section can be found in [9, chapter 8, pp. 131-141].

Definition 2.33. Let (M̃, g̃) be a Riemannian manifold. A Riemannian submanifold

of (M̃, g̃) is a Riemannian manifold (M, g) together with an embedding ι : M ↪→ M̃ ,

such that g = ι∗g̃. In this situation M̃ is called the ambient manifold.

Remark 2.34. Without loss of generality, we may assume that M ⊂ M̃ , so the metric

g is just the restriction of g̃ to M . Therefore, in this section g denotes both the metric

on M and M̃ .

2.5.1 The second fundamental form

Definition 2.35. Let X,Y be vector fields on M , which are extended arbitrarily to

M̃ . We have a decomposition

∇̃XY = (∇̃XY )> + (∇̃XY )⊥,

where (∇̃XY )> is tangent to M and (∇̃XY )⊥ is normal to M . The second fundamental

form II is defined by

II : T (M)× T (M) → N (M)

(X,Y ) 7→ II(X,Y ) = (∇̃XY )⊥,

if N (M) = Γ(M,νM
M̃

) are the sections of M into the normal bundle νM
M̃

of M in M̃ .

Lemma 2.36 ([9, p.134]). The second fundamental form is independent of the exten-

sions of X and Y , symmetric in X and Y and C∞-bilinear.

Theorem 2.37 (Gauß curvature equation, [9, p.136]). For any X,Y, Z,W ∈ T (M)

which are extended arbitrarily to M̃ the following equations hold:

∇̃XY = ∇XY + II(X,Y )

R̃m(X,Y, Z,W ) = Rm(X,Y, Z,W )− g
(
II(X,W ), II(Y, Z)

)
+ g
(
II(X,Z), II(Y,W )

)
.

Lemma 2.38 ([9, p.138]). For a curve γ in M and a vector field V tangent to M , we

have

D̃tV = DtV + II(γ̇, V ).

Lemma 2.39. Let M ⊂ M̃ be totally geodesic, i.e. for every p ∈ M,V ∈ TpM , the

geodesic γV of M is already a geodesic in M̃ . Then the second fundamental form of

M vanishes everywhere.

Proof. Let p ∈M,V ∈ TpM and let γV be the geodesic, i.e. Dtγ̇V = 0. Since M ⊂ M̃
is totally geodesic, γV is a geodesic in M̃ , hence D̃tγ̇V = 0. Using the Gauß curvature

equation for the derivative along a curve (2.38), we see

II(V, V ) = II(V, γ̇V ) = D̃tV −DtV = D̃tγ̇V −Dtγ̇V = 0.
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If V,W ∈ T (M) one gets:

0 = II(V +W,V +W ) = II(V, V ) + II(W,W )︸ ︷︷ ︸
=0

+2II(V,W )

and thus II(V,W ) = 0.

2.5.2 Riemannian hypersurfaces

Let dimM = n, dim M̃ = n + 1 and let N be a unit normal vector field of M in M̃ .

Since II(X,Y ) ∈ N (M), we can write

II(X,Y ) = h(X,Y )N,

where h(X,Y ) := g(II(X,Y ), N).

Definition 2.40. The shape operator s is defined to be the map

s : T (M) → T (M),

such that

g
(
X, s(Y )

)
= h(X,Y ).

Since h is symmetric s is a self adjoint. Let (Ei) be an orthonormal basis of eigenvectors

of s, such that s(Ei) = λiEi. Then the Ei’s are called the principal directions and the

λi’s are called the principal curvatures.

Proposition 2.41 ([9, p. 148]). The shape operator s is given by

s(X) = −∇̃XN.

2.6 Riemannian submersions

In this section we gather a few facts from [11] and [2].

Definition 2.42. A map f : M → B is called a Riemannian submersion if f is a

submersion and f is an isometry on the horizontal part of the TM .The horizontal

part of TM consists of all tangent vectors X ∈ TpM which are orthogonal to the

tangent space Tbf
−1
(
f(b)

)
of the fiber f−1

(
f(b)

)
=: Fb. Let T(h)M and T(v)M denote

the horizontal and the vertical part of TM .

Definition 2.43. We define the maps

H : TM → T(h)M

V : TM → T(v)M
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as the horizontal and the vertical projection of the tangent spaces of M . Furthermore,

if E,F are vector fields, we define

TEF = H∇VE(VF ) + V∇VE(HF )

AEF = V∇HE(HF ) +H∇HE(VF ).

Let (Xi) be an orthonormal local frame for T(h)M and (Uj) be an orthonormal local

frame for T(v)M . We then define

N =
∑
j

TUjUj

δ̌N = −
∑
i

∑
j

(
(DXiT )UjUj , Xi

)
|A|2 =

∑
i

∑
j

(AXiUj , AXiUj)

|T |2 =
∑
i

∑
j

(TUjXi, TUjXi).

Proposition 2.44 ([2, p. 244]). Let (M, g) be a Riemannian submersion over (B, ǧ)

with fiber (Fb, ĝb) over b ∈ B, where ĝb = g|Fb and let π denote the projection map.

Let κ, κ̌, κ̂ be the scalar curvatures of the corresponding metrics. Then

κ = κ̌ ◦ π + κ̂− |A|2 − |T |2 − |N |2 − 2δ̌N.

Lemma 2.45 ([11, p. 461, p.465]). Let V,W be horizontal and X,Y be vertical vector

fields, let ∇, ∇̂ and ∇̌ denote the Levi-Civita connections of M,F and B and let g be

the metric of M .

1. ∇VW = TVW + ∇̂VW

2. Rm(X,Y, Y,X) = Řm(X,Y, Y,X)− 3 ‖AYX‖2

3. Rm(V,X,X, V ) = g
(

(∇XT )V V,X
)
− ‖TVX‖2 + ‖AXV ‖2

4. Rm(V,W,W, V ) = R̂m(V,W,W, V )− ‖TVW‖2 + g
(
TWW,TV V

)
.

Lemma 2.46. If Fb is totally geodesic in M , we have T ≡ 0. In this case, we have

the following inequality for the scalar curvature:

κ ≥ κ̌+ κ̂− 6|A|2.

Proof. T ≡ 0 follows immediately from (2.37), (2.39) and (2.45).
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For the scalar curvature we compute:

κ =
∑
i,j

Rm(Ei, Ej , Ej , Ei)

= 2
∑
i<j≤p

Rm(Ei, Ej , Ej , Ei) + 2
∑
i≤p<j

Rm(Ei, Ej , Ej , Ei)

+2
∑
p<i<j

Rm(Ei, Ej , Ej , Ei)

(2.45, 2., 3. & 4.)
= 2

( ∑
i<j≤p

R̃m(Ei, Ej , Ej , Ei)− 3
∑
i<j≤p

‖AEiEj‖
2

︸ ︷︷ ︸
≤3|A|2

+
∑
i≤p<j

‖AEiEj‖
2

︸ ︷︷ ︸
≥0

+
∑
p<i<j

R̂m(Ei, Ej , Ej , Ei)
)

≥ κ̌+ κ̂− 6|A|2.

2.7 A topology on C∞(M,N)

Definition 2.47. Let M,N be two smooth manifolds, (U,ϕ), (V, ψ) charts and K ⊂ U
compact, such that f(K) ∈ V , f ∈ C∞(M,N) and ε > 0. A subbasis of the Cr-

topology is given by the sets N r
(
f, (U,ϕ), (V, ψ),K, ε

)
being defined by:

g ∈ N
(
f, (U,ϕ), (V, ψ),K, ε

)
:⇐⇒ g(K) ⊂ V and∥∥Dk(ψfϕ−1)(x)−Dk(ψgϕ−1)(x)

∥∥ < ε

∀x ∈ ϕ(K), k ∈ {0, . . . , r}.

As an abbreviation we define

‖f, g‖kψ,ϕ (x) :=
∥∥∥Dk(ψfϕ−1)(x)−Dk(ψgϕ−1)(x)

∥∥∥ .
The C∞-topology is defined as the union of all Cr-topologies.

Remark 2.48. The C∞-topology defines a first-countable space, which can be seen by

choosing { 1
n}n∈N for ε. So by [4, p. 258] continuity can be verified by the sequence

criterion, i.e. α is continuous, if and only if fn → f implies α(fn)→ α(f).

Proposition 2.49. If ‖fn, f‖kψ,ϕ (x) → 0 for two charts ψ,ϕ and for all x ∈ ϕ(U),

then it holds for any other charts ψ′, ϕ′, provided, x ∈ ϕ′(U ′) and f(ϕ′(x)) ∈ V ′.

Proof. Since ‖fn, f‖kψ,ϕ (x)→ 0, there is an n0, such that fn(ϕ′(x)) ∈ V ′ for all n ≥ n0
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and the following expression is well defined for big n.

‖fn, f‖kψ′,ϕ′ (x) =
∥∥ψ−1ψfnϕ

−1ϕ,ψ−1ψfϕ−1ϕ
∥∥k
ψ′,ϕ′

(x)

=
∥∥∥Dkψ′ψ−1ψfnϕ

−1ϕϕ′−1(x)−Dkψ′ψ−1ψfϕ−1ϕϕ′−1(x)
∥∥∥

= ‖Dk(ψ′ψ−1)Dk(ψfnϕ
−1)Dk(ϕϕ′−1)(x)

−Dk(ψ′ψ−1)Dk(ψfϕ−1)Dk(ϕϕ′−1)(x)‖

=

∥∥∥∥∥∥∥Dk(ψ′ψ−1)
(
Dk(ψfnϕ

−1)−Dk(ψfϕ−1)
)

︸ ︷︷ ︸
−→0

Dk(ϕϕ′−1)(x)︸ ︷︷ ︸
∈ϕ(U∩U ′)

∥∥∥∥∥∥∥→ 0.

Since the transition maps are smooth, every derivative of them is continuous and thus

the entire term converges to 0.

Proposition 2.50. If (ϕ,U) is a chart and K ⊂ U , then we have the following equiv-

alence:

For any ε > 0 there is an n0 ∈ N, such that for all n > n0, ‖fn, f‖kψ,ϕ (x) < ε for all

x ∈ K ⇐⇒ ‖fn, f‖kψ,ϕ (x)→ 0 for all x ∈ K.

Proof. ”⇒” is clear. ”⇐” Since ‖fn, f‖kψ,ϕ : ϕ(U)→ R is continuous,

(‖fn, f‖kψ,ϕ)−1(−ε, ε) =: Un ⊂ ϕ(U)

is open. Since ‖fn, f‖kψ,ϕ (x)→ 0 for all x ∈ ϕ(K), there is an nx ∈ N, such that, x ∈ Un
for all n ≥ nx. Then ∪

x∈K
Unx is an open cover of ϕ(K) and since K is compact, there

is a number n0 ∈ N, such that ϕ(K) ⊂ Un0 for all n ≥ n0. Hence ‖fn, f‖kψ,ϕ (x) < ε

for all n ≥ n0.

Proposition 2.51. We have the following equivalence:

1. For all ε > 0, r ≥ 0, there is an n0, such that ‖fn, f‖kψ,ϕ (x) < ε for all n ≥ n0

and 0 ≤ k ≤ r.

2. For all ε > 0, k ≥ 0, there is an n0, such that ‖fn, f‖kψ,ϕ (x) < ε for all n ≥ n0

Proof. ”1.⇒ 2.” is obvious.

”2.⇒ 1.” Let r ≥ 0. For every 0 ≤ k ≤ r, there is an nk ∈ N, such that ‖fn, f‖kψ,ϕ (x) <

ε for all n ≥ nk. If we then choose N0 := max
0≤k≤r

nk and then

‖fn, f‖kψ,ϕ (x) < ε for all n ≥ N0 and 0 ≤ k ≤ r.

Remark 2.52. The first two of these three propositions imply that convergence of func-

tions in the C∞-topology can be verified pointwise and it does not matter which chart

we use. By (2.51) we only have to verify that for all x ∈M we have ‖fn, f‖kψ,ϕ (x)→ 0

in some charts ψ,ϕ and for all k.
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Proposition 2.53. The map f 7→ Df is continuous in the C∞-topology.

Proof. Let fn ∈ C∞(M,N) be a sequence converging to f . Since charts for TM and

TN are given by the differentials
(
U×TM |U , (ϕ,Dϕ)

)
, one derives continuity by (2.52)

and:

ε

since fn→f︷︸︸︷
> ‖f, fn‖k+1

ψ,ϕ (x) = ‖Df,Dfn‖kDψ,Dϕ (x).

Proposition 2.54. The map C∞(M,N) × C∞(N,L) → C∞(M,L), f, g 7→ g ◦ f is

continuous.

Proof. This follows from the fact that the C∞-topology we defined is the same as the

∞-jet-topology [8, p. 62] and from [10, p. 68]. Here, this is only proven for the case

that f is proper.

The proposition is still true, if f is not proper, but as we only need it for the case

of proper maps this proof suffices for us.

Corollary 2.55. The pullback map Emb(M,N)×R(N)→ R(M) is continuous.

Proof. The pullback map factorizes through

Emb(M,N)×R(N)→ Emb(M,N)× C∞(M,T 2N) → R(M)

(f, g) 7→
(
f, g(f)

)
7→ f∗g.

where g(f) and f∗g are defined as follows: Let x ∈ M , VN ,WN ∈ Tf(x)N and

VM ,WM ∈ TxM . Then

g(f)(x, VN ,WN ) = (g ◦ f(x))
(
VN ,WN

)
f∗g(x, VM ,WM ) = g

(
f(x)

)(
Dxf · VM , Dxf ·WM

)
=

(
g(f(x)) ◦ (Dxf,Dxf)

)
(VM ,WM ).

These two maps are continuous by (2.53) and (2.54).

Lemma 2.56. Let h : C∞(R× Rn,Rn)→ Rn be a continuous function.

Then the map

σ : C∞(R× Rn,Rn) → C∞(R,Rn)

f 7→ σ(f) := x, such that ẋ(t) = f(t, x(t)) and x(0) = h(f)

is continuous.
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Proof. By (2.52) it is enough to consider the identity as charts. So it suffices to examine

‖σ(fn), σ(f)‖k (t). If x(t) is a solution to the above differential equation, we get that

x(t) =
∫ t

0 f(s, x(s))ds+ x(0)

‖σ(fn), σ(f)‖0 (t) = ‖σ(fn)(t)− σ(f)(t)‖

=

∥∥∥∥∫ t

0
fn(s, xn(s))ds+ h(f)−

∫ t

0
f(s, x(s))ds+ h(fn)

∥∥∥∥
≤

∥∥∥∥∫ t

0
fn(s, xn(s))− fn(s, x(s))ds

∥∥∥∥
+

∫ t

0
‖fn(s, x(s))− f(s, x(s))‖︸ ︷︷ ︸

→0

ds+ ‖h(fn)− h(f)‖︸ ︷︷ ︸
→0︸ ︷︷ ︸

=:an→0

.

Since fn is smooth for every n, it is Lipschitz with constant Kn on the compact subset

[0, t] ⊂ R and as fn → f , we get for all ε > 0 and n big enough:

‖fn(x)− fn(y)‖ ≤ ‖fn(x)− f(x)‖︸ ︷︷ ︸
→0

+ ‖f(x)− f(y)‖+ ‖fn(y)− f(y)‖︸ ︷︷ ︸
→0

≤ K ‖x− y‖+ ε.

and so Kn → K and so K0 can be chosen, such that ‖fn(x)− fn(y)‖ ≤ K0 ‖x− y‖ for

all n. Then

ϕn(s) := ‖x(t)− xn(t)‖ =

∥∥∥∥∫ t

0
fn
(
s, xn(s)

)
− fn

(
s, x(s)

)
ds

∥∥∥∥+ an

≤
∫ t

0
K0 ‖x(s)− xn(s)‖ ds+ an = an +

∫ t

0
ϕ(s)ds.

and Gronwall’s lemma then tells us that

‖σ(fn), σ(f)‖0 (t) = ‖x(t)− xn(t)‖ = ϕn(t) ≤ an exp(K0t)→ 0.

We can now conclude the lemma by induction.

‖σ(fn), σ(f)‖1 (t) =
∥∥fn((t, xn(t)

)
− f

(
t, x(t)

)∥∥
≤

∥∥fn((t, xn(t)
)
− fn

(
(t, x(t)

)∥∥︸ ︷︷ ︸
≤K0‖x(t)−xn(t)‖→0

+
∥∥fn((t, x(t)

)
− f

(
(t, x(t)

)∥∥︸ ︷︷ ︸
→0

→ 0

‖σ(fn), σ(f)‖k (t) =

∥∥∥∥( ddt)k−1(
fn(t, xn(t))− f(t, x(t))

)∥∥∥∥
= ‖F

(
fn, . . . , f

(k−1)
n , xn(t), . . . , x(k−1)

n (t), t
)

−F
(
f, . . . , f (k−1), x(t), . . . , x(k−1)(t), t

)
‖,

where F is a polynomial which comes from the derivation. By induction hypothesis we

know that x
(k−1)
n converges point wise to x(k−1) and so every argument of F converges

and since polynomials are continuous we get that the entire right hand side converges

to 0. Putting all the pieces together, we obtain

σ(fn)→ σ(f)
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and thus the map σ is continuous.

Remark 2.57. Lemma (2.56) tells us that the solution of any first order ordinary

differential equation depends continuously on the defining equation and the initial value.

Since we can translate any higher order ordinary differential equation into a system of

several coupled first order differential equations, we get that the solution of any ordinary

differential equation depends continuously on the defining equation (or equations) and

on the initial values. This also holds if we have ordinary differential equations on

manifolds, since we can look at them in local coordinates.

2.8 The spaces R+(M) and R+
0 (M)

Definition 2.58. A torpedo curve of radius ε is a curve in R2 which starts with a

horizontal line segment at (0, ε) and ends in the arc of a circle of radius ε.

ɛ
γɛ

Figure 2.1: A torpedo curve of radius ε

A torpedo metric of radius ε on Dq is the metric induced by the restriction of the

euclidian metric on Rq+1 to

Tγε := {(x, t) ∈ Rq × R : (‖x‖ , t) ∈ Graph(γε)} ∼= Dq.

Remark 2.59. Sometimes the following is also used as the definition of a torpedo

metric:

A torpedo metric is a metric of positive scalar curvature on Dq, which coincides with

the round metric on Sq−1 = ∂Dq and is the metric of the standard round sphere Sq

near the center of Dq.

Definition 2.60. We define

R(M) = {g ∈ C∞(M,T 2M) : g is a riemannian metric}

R+(M) = {g ∈ R(M) : g has positive scalar curvature}.
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We equip the space R(M) with the C∞-topology and the space R+(M) with the

subspace topology.

Definition 2.61. Let τ be a tubular neighbourhood of Np in Mn, let g0 be a torpedo

metric of radius T0 and let gN be a metric on N . A metric g is called a standard metric

with respect to τ , g0 and gN , if

τ∗g = gN + g0.

We define

R0(M) = {g ∈ R(M) : g is a standard metric}

R+
0 (M) = R0(M) ∩R+(M)

and equip them with the subspace topology. The dependence on τ, g0 and gN is omitted

in this notation.

Proposition 2.62. Let U ⊂M and let ∂x1 , . . . , ∂xn be a local frame for TU . The map

χijk : R(M) → C∞(M,R)

g 7→ Γkij ,

which maps a given metric to its Christoffel symbols (in local coordinates) is continuous.

Proof. In local coordinates, the Christoffel symbols are given by

Γkij =
1

2

∑
l

gkl
(∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
.

By (2.53) we know that the terms of the form
∂gjl
∂xi

are continuous in g. By Cramer’s

rule, we have:

gkl =
(−1)k+l

det(g)
det(Mkl),

where Mkl is given by omitting the k-th row and the l-th column of g. Since the

determinant is given by a polynomial, it is continuous and we can conclude that the

given map χijk is continuous for every i, j, k ∈ {1, . . . , n}.

Proposition 2.63. Let (ψ, u), (ϕ, V ) be charts of R(M) that map fibers to fibers and

are fiberwise linear. Then N r
(
f, ϕ, ψ,K, ε

)
is starshaped for all r ∈ N, with respect to

fiberwise addition and multiplication.

Proof. Let g ∈ N r
(
f, ϕ, ψ,K, ε

)
. First we show that (tf + (1− t)g)(K) ⊂ V , which is

clear, because f(K) ⊂ U ⊃ g(K) and because addition and multiplication are defined

fiberwise.

Now we examine ‖f, tf + (1− t)g‖kψ,ϕ:

‖f, tf + (1− t)g‖kψ,ϕ =
∥∥∥Dk

(
ψfϕ

)
−Dk

(
ψ(tf + (1− t)g)ϕ

)∥∥∥
= |1− t|

∥∥∥Dk
(
ψfϕ

)
−Dk

(
ψgϕ

)∥∥∥ < ε.

This completes the proof.
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Proposition 2.64. Let g1, g2 be two metrics on M . Then the maps I → R(M), t 7→
tg1 and I → R(M), t 7→ (1− t)g1 + tg2 is continuous.

Proof. ∥∥((1− t)g1 + tg2

)
,
(
(1− t)g1 + tng2

)∥∥k
ψ,ϕ

=
∥∥∥Dk(ψ ◦

(
(1− t)g1 + tg2

)
◦ ϕ)−Dk(ψ ◦

(
(1− tn)g1 + tng2

)
◦ ϕ)

∥∥∥
≤ |(1− t)− (1− tn)|

∥∥∥Dk(ψg1ϕ)
∥∥∥+ |t− tn|

∥∥∥Dkψg2ϕ
∥∥∥→ 0.

The last inequality originates from the fact that the multiplication occurs only in the

fibers and we can choose the charts to be fiberwise linear.

Corollary 2.65. Let M be compact. If gn → g in R+(M) for the Cr-topology for

some r ≥ 1, then for some n ≥ 0 gn lies in the same path component as g for the

C∞-topology.

Proof. We have the continuous function

κ : R(M) → R

h 7→ κ(h) := min
x∈M

(κh(x)),

where κh(x) is the scalar curvature of h at the point x. From the definitions we see

that the Christoffel symbols depend continuously on the metric and its first derivative,

the curvature tensor depends continuously on the Christoffel symbols and the scalar

curvature depends continuously on the curvature tensor. We get that this map is

continuous in the Cr topology if r is at least one (note that we need the first derivative

of the metric to define the Christoffel symbols!).

Since g is a metric of positive scalar curvature and M is compact, we know that

κ(g) > a for some a > 0. We deduce that there is an open neighbourhood U of g in

R(M), such that κ(U) ⊂ (a,∞) and so every metric in this neighbourhood is a psc

metric. Since gn → g in the Cr-topology we know that for n big enough gn ∈ U and

without loss of generality, we may assume that U = N r
(
g, ϕ, ψ,K, ε

)
. This is star

shaped, which means that the linear path tgn + (1 − t)g lies entirely in U ⊂ R+(M).

Thus, we have created a path from gn to g which is continuous in the C∞-topology by

(2.64).

2.9 Isotopy implies concordance

Lemma 2.66 ([6, p. 425], [14, p.73]). We have:

1. The principal curvature of an embedded hypersurface Sn−1(ε) are of the form

−1
ε +O(ε) for small epsilon.

2. The term O(ε) depends on the metric and its derivatives.
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3. Let gε be the induced on Sn−1(ε) and let g0,ε be the standard euclidian metric of

curvature 1
ε2

. Then as ε → 0, 1
ε2
gε → 1

ε2
g0,ε = g0,1 in the C2-topology described

in (2.7).

Proof. 1. and 3. are proven in [6, p. 425] and [14, p. 73]. For 2. we are going to

examine the computation in these two papers. The following terms are the one, where

an O(.) arises:

gij(x) = δij +
∑
k,l

aklijxkxl +O(‖x‖3)

Γkij =
∑
l

γklij +O(‖x‖2) = O(‖x‖)

g(Dtγ̇, e1) = −1

ε
+ Γl22(ε, 0, . . . , 0)︸ ︷︷ ︸

=O(ε)

.

So the O(ε) only depends on the derivatives of the Christoffelsymbols which depend

on the metric and its derivatives.

Remark 2.67.

g(r) is O
(
f(r)

)
⇐⇒ ∃A,B ∈ R : A · f(r) ≤ g(r) ≤ B · f(r), for all r �∞

Lemma 2.68 ([6, p.430]). Let gt, t ∈ [0, 1] be a continuous (in the C∞-topology) family

of metrics on a compact manifold X. If the scalar curvature of gt is positive for all t,

then there exists an a0 > 0, such that for all a ≥ a0, the metric

ha = gt/a + dt2

on X×[0, a], where dt2 denotes the standard metric on R, has positive scalar curvature.

Remark 2.69. This lemma is an elementary way of stating that isotopic metrics are

concordant.

Proof. Let ∇ and ∇̃ be the Levi Civita connections with respect to g0 and ha and let

(x1, . . . , xn+1) be local coordinats at a point (p, t) ∈ X × [0, a], where t = xn+1. We
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get:

gt/a(x1, . . . , xn) =

n∑
i,j

(
gt/a

)
i,j

(x1, . . . , xn)︸ ︷︷ ︸
=:gij(x1,...,xn,t/a)

dxidxj

ha(x1, . . . , xn+1) =
n+1∑
i,j

γaij(x1, . . . , xn+1)dxidxj

=
n∑
i,j

gij(x1, . . . ,
xn+1

a
)dxidxj + dt2

γa(x1, . . . , xn+1) =

(gij(x1, . . . ,
xn+1

a )
)
i,j

0

0 1


(γa)−1(x1, . . . , xn+1) =

(gij(x1, . . . ,
xn+1

a )
)
i,j

0

0 1

 .

We will now compute the Christoffel symbols (Γa)n+1
ij of the Levi-Civita connection

with respect to ha:

∂γaij
∂xl

(x1, . . . , xn+1) =


0, if i = n+ 1 or j = n+ 1

∂gij
∂xl

(x1, . . . ,
xn+1

a ), if i, j, l ≤ n
1
a
∂gij
∂xl

(x1, . . . ,
xn+1

a ), if i, j ≤ n and l = n+ 1

(Γa)kij =
1

2

∑
l

(γa)kl
(∂γajl
∂xi

+
∂γail
∂xj
−
∂γaij
∂xl

)
.

If i, j ≤ n, we have:

(Γa)n+1
ij =

1

2

∑
l

(γa)n+1,l︸ ︷︷ ︸
=δn+1,l

(∂γajl
∂xi

+
∂γail
∂xj
−
∂γaij
∂xl

)
=

1

2

(∂γaj,n+1

∂xi︸ ︷︷ ︸
=0

+
∂γai,n+1

∂xj︸ ︷︷ ︸
=0

−
∂γaij
∂xn+1

)

= −1

2

∂γaij
∂xn+1

= −1

2

1

a

∂gij
∂xn+1

= O(
1

a
)

∂(Γa)n+1
ii

∂xn+1
= −1

2

1

a

∂

∂xn+1
(
∂gii
∂xn+1

) = −1

2

1

a2

∂2gii
∂x2

n+1

= O(
1

a2
)

(Γa)n+1
n+1,j = −1

2

∂γan+1,j

∂xn+1
≡ 0

(Γa)mn+1,j =
1

2

∑
l

(γa)m,l︸ ︷︷ ︸
=O(1)

∂γajl
∂xn+1︸ ︷︷ ︸
=O( 1

a
)

= O(
1

a
).

Since (gt) is a continuous family, the function t 7→ ∂gij
∂xn+1

(x1, . . . , xn, t) is continuous

on the compact space [0, 1], hence it is bounded, which is the reason why
∂gij
∂xn+1

is O(1).
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If we consider X ⊂ X × [0, a] as a submanifold, we can use the Gauss curvature

equation (2.37) to compute R̃m(∂i, ∂j , ∂j , ∂i) as long as i, j ≤ n. In order to do so, we

need an estimate for the second fundamental form of X in X × [0, a]. Let i, j ≤ n.

II(∂i, ∂j) = (∇̃∂i∂j)
⊥ = ha

(∑
k

(Γa)kij∂k, ∂n+1

)
· ∂n+1

= (Γa)n+1
ij · ∂n+1 = O(

1

a
) · ∂n+1.

Applying the Gauss curvature equation (2.37), we get for i, j ≤ n:

R̃m(∂i, ∂j , ∂j , ∂i) = Rm(∂i, ∂j , ∂j , ∂i) + g
(
II(∂i, ∂j), II(∂i, ∂j)

)
− g
(
II(∂i, ∂i), II(∂j , ∂j)

)
= Rm(∂i, ∂j , ∂j , ∂i) +O(

1

a2
)

So what’s left is to compute R̃m(∂i, ∂n+1, ∂n+1, ∂i) = R̃m(∂n+1, ∂i, ∂i, ∂n+1).

R̃m(∂n+1, ∂i, ∂i, ∂n+1) = g
(
R̃(∂n+1, ∂i, ∂i), ∂n+1

)
= g

((
∇̃∂n+1∇̃∂i∂i − ∇̃∂i∇̃∂n+1∂i − ∇̃[∂n+1, ∂i]︸ ︷︷ ︸

=0

∂i
)
, ∂n+1

)
= g

((
∇̃∂n+1

∑
k

(Γa)kii∂k − ∇̃∂i
∑
k

(Γa)kn+1,i∂k
)
, ∂n+1

)
.

∇̃∂n+1

∑
k

(Γa)kii∂k
(2.14)

=
∑
k

(∂(Γa)kii
∂xn+1

+
∑
m

(Γa)mii (Γ
a)kn+1,m

)
∂k

∇̃∂i
∑
k

(Γa)kn+1,i∂k
(2.14)

=
∑
k

(∂(Γa)kn+1,i

∂xi
+
∑
m

(Γa)mn+1,i(Γ
a)ki,m

)
∂k.

Hence,

R̃m(∂n+1, ∂i, ∂i, ∂n+1) =
∂(Γa)n+1

ii

∂xn+1︸ ︷︷ ︸
=O( 1

a2
)

−
∂(Γa)n+1

n+1,i

∂xi︸ ︷︷ ︸
=0

+
∑
m

[
(Γa)mii (Γa)n+1

n+1,m︸ ︷︷ ︸
=0

− (Γa)mn+1,ix(Γa)n+1
m,i︸ ︷︷ ︸

=O( 1
a2

)

]
= O(

1

a2
).

Overall we see:

κX×[0,a] =
∑

i,j≤n+1

R̃m(∂i, ∂j , ∂j , ∂i)

=
∑
i,j≤n

R̃m(∂i, ∂j , ∂j , ∂i) + 2

n∑
j=1

R̃m(∂n+1, ∂j , ∂j , ∂n+1)

=
∑
i,j≤n

Rm(∂i, ∂j , ∂j , ∂i) +O(
1

a2
) = κX +O(

1

a2
).
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Thus, if a is big enough, κX×[0,a] is positive on an open neighbourhood of p × [0, a],

since our computation did not depend on the value of t. Since X is compact we can

cover it by a finite number of those open subsets, each one with perhaps a different

constant a. We then choose the biggest of these a and we get that X × [0, amax] has

positive scalar curvature.

Remark 2.70. From the equation

κX×[0,a] = κX +O(
1

a2
)

we see that the same proof works, if we replace the condition ”positive scalar curvature”

by ”scalar curvature greater than B ∈ R”.



3 The Gromov-Lawson surgery theorem

The construction in this chapter originates from [6].

Theorem 3.1 (Gromov-Lawson surgery theorem, [6, p. 423]). Let N be obtained from

M by surgery in codimension at least 3. Then:

R+(M) 6= ∅ ⇒ R+(N) 6= ∅.

Remark 3.2. We will use the term ”psc manifold” as a synonym for ”manifold, which

carries a metric of positive scalar curvature”.

The assumption of codimension at least 3 is vital. If it is dropped, one easily finds

the counterexample of the 2-Torus, which is obtained from the 2-sphere by surgery in

dimension 0, i.e. codimension 2. However, the 2-sphere is a psc manifold, whereas the

2-torus is not. This follows from [7, p. 210].

3.1 Outline of the proof

The strategy of this proof is to use the flexibility of surgery. Since surgery is only

defined up to diffeomorphism, one can stretch and bend the manifold. So in a way, we

do not search a metric of positive scalar curvature, but rather take a given metric and

deform the manifold until it is a psc manifold.

So, let Mn be the manifold from (3.1) and let Sp be the embedded surgery sphere

with trivial normal bundle which can transported to M , using the exponential map.

So without loss of generality, we may say that we have an embedding Sp ×Dq ↪→M ,

where q = n− p ≥ 3. We identify Sq ×Dq with its image under the embedding.

Figure 3.1: A part of the manifold with embedded Sp ×Dq

25
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The goal is to replace Sp × Dq by Dp+1 × Sq−1. We do not take a standard disk

Dp+1 but we put a cylinder in between and perform the surgery on top of it. This will

give us the opportunity of changing the metric on the cylinder using (2.68).

Figure 3.2: Inserting a cylinder

Our goal is to make the scalar curvature on the Sq−1 big enough, so that we can

use (2.46) to estimate the scalar curvature on Sp × Sq−1. This means decreasing the

radius of Dq. So we won’t take a straight cylinder, but we bend the edge near M .

Figure 3.3: Bending the cylinder near the manifold M

So we get that our cylinder starts in M and ends at Sp×Sq−1(ε), where ε > 0 is the

diameter of the normal sphere. The metric on Sq−1(ε) converges to the standard round

metric (2.66) and by (2.65), we can homotope the metric on Sp×Sq−1(ε) through psc

metrics to one, where the second factor carries the standard round metric of radius ε,

if ε is small enough.

Let gt be a straight line from the metric on Sp×Sq−1(ε) to the product metric of two

standard round spheres. Then Sp × Sq−1(ε) is a Riemannian submersion with totally

geodesic fibre Sq−1(ε) (Note that the metric on Sq−1(ε) is the same everywhere). This

means we can use the estimate (2.46) derived from the O’Neill formulae [11]:
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κ
Sp×Sq−1(ε)
t ≥ κ

Sq−1(ε)
t︸ ︷︷ ︸

κS
q−1(ε)�0

+κS
p

t − 6|At|2︸ ︷︷ ︸
≥C

> 0. (3.3)

The last part can be interpreted as a smooth function in t over the compact set

[0, 1] which takes its minimum and maximum, hence it is bounded from below by

some C ∈ R. If ε is small enough, and thus κS
q−1(ε) is big enough, we can maintain

κ
Sp×Sq−1(ε)
t > 0 for all t. Putting these two homotopies together, we get a homotopy

from the metric on Sp × Sq−1(ε) at the end of the cylinder to the product metric of

two standard spheres.

Using (2.68) we can put the metric ha = gt/a+dt2, belonging to the above homotopy

on the cylinder, for some big enough a. We then achieved that the cylinder ends on

Sp × Sq−1(ε), where both spheres carry the standard round metric. We then glue

in Dp+1 × Sq−1(ε), where we regard Dp+1 as the upper hemisphere of Sp+1. Since

Sp ⊂ Sp+1 is an isometric inclusion, i.e. the metric of Sq+1|Sq is the same as the

standard round metric of Sq, we get that the metrics on Dp+1 × Sq−1 and the one on

the end of the cylinder agree on the boundary.

Standard metric 
on SpxSq-1(ε)

Figure 3.4: Inserting a cylinder
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So the metrics can be glued together as well and we get that the new manifold,

obtained by this surgery has a psc metric.

If N is obtained from M by surgery, we know that there is a diffeomorphism from N

to a manifold N ′, which is obtained from M by surgery like the one described above.

We then take the metric on N to be the pullback of the metric on N ′ under this

diffeomorphism and deduce that there is a psc metric on N .

Remark 3.4. The above estimate (3.3) also works, if we take any manifold N instead

of Sp and take fixed metric gN on N . In this case, we derive:

Corollary 3.5. Let gN be a fixed metric on N . If g is an arbitrary psc metric on M

restricted to N × Sq−1(ε), then for some small enough ε, there is a homotopy through

psc metrics from g to gN + gε, where gε is the standard round metric of radius ε.

Remark 3.6. We did not yet use the vital assumption of n − p ≥ 3. So there has to

be a point in the proof, where it is hard to make the scalar curvature remain positive.

Since the bending is the only thing, we haven’t done yet, we may conclude that it has

to show up there. The bending will be described in the next section.

Corollary 3.7 ([6, p. 423]). The connected sum of two psc manifolds of dimension a

least 3 is a psc manifold.

Proof. Let Mn be a manifold as above and let Dn → M be an embedding. After

cutting out the interior of Dn and performing the same procedure described above, we

arrive at the following situation:

standard round spheres 
of small radius
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On the boundary, the metric is the standard round metric of a sphere (of small

radius). If we do the same thing with the other manifold we get the same thing twice

and we can glue these manifolds and their metrics together, since the metrics coincide

on the boundary.

3.2 The bending argument

We will describe the bending by using a bending map γ : [0,∞)→ [0,∞)×(0, r), where

r is the radius of the embedded q-disc. We then define Mγ ⊂ Sp ×Dq × R by

(x, y, t) ∈Mγ ⇐⇒ (‖y‖g , t) ∈ Graph(γ)

⇐⇒ ∃a ∈ [0,∞), such that γ(a) = (‖y‖g , t)

Sp

Sp x Sq-1

Dq

γ 

Figure 3.5: Describing the bending

where ‖y‖g denotes the distance from y to the origin of Dq. Mγ is the result of the

bending, i.e. the bent cylinder that sits on top of the manifold M .
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Now we have the task to choose γ and we have to be very careful in doing so. We

want to have γ satisfying the following conditions:

1. γ starts with a vertical line segment (i.e. t ≡ 0 in the beginning).

2. γ ends with a horizontal line segment (i.e. r ≡ r∞, for some 0 < r∞ �∞ in the

end).

3. Mγ has positive scalar curvature with respect to the induced metric it receives

as a submanifold of Sp ×Dq × R.

θ

r

r
r1

r8

r0

t0 t8 t

Figure 3.6: The bending map γ

The first condition implies that near r = r, Mγ is isometric to a portion of M .

The second condition implies that for t � 0, Mγ is isometric to Sp × Sq−1(r∞) × R,

where Sq−1(r∞) is an embedded q-sphere of small radius.

The third condition is the hard part of choosing γ.

3.2.1 The curvature formula

In order to make the scalar curvature positive, one needs to compute it first. This will

be done in the following section.

Lemma 3.8. Let k be the curvature of γ, i.e. let k be the smooth function satisfying

γ̈(s) =

(
0 1

−1 0

)
· γ̇(s) · k(s).

The scalar curvature of Mγ is given by:

κMγ = κS
p×Dq + sin2 θ ·O(1) + k · sin θ ·

(
−2 · (q − 1)

r
+O(1)

)
+ sin2 θ ·

((q − 1)(q − 2)

r2
+

2 · (q − 1)

r
·O(1)

)
+ sin θ · k · (q − 1) ·O(r).
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Remark 3.9. This formula is different from the formulae found in the following pa-

pers: [6], [13] and [14]. There is a detailed, yet slightly wrong computation in the

appendix of [14, pp. 77-80]. We will follow this computation.

Remark 3.10. In this formula we see the necessity of q ≥ 3: For small r the right

hand side is dominated by the sin2(θ) (q−1)(q−2)
r2

term, so this one must not vanish,

which means that (q − 1)(q − 2) must be greater than 0. So q must be at least 3 or

q = 0. The latter case is not very interesting.

Remark 3.11. From (2.66) and from the proof of (3.8) we see that the O(.)-terms

only depend on the metric on M and its derivatives. So there is a constant C > 0,

such that for all O(.) originating from the formula above the following inequalities hold

for r small enough:

−C ≤ O(1) ≤ C

−C · r ≤ O(r) ≤ C · r

−C · r2 ≤ O(r2) ≤ C · r2.

The constant C only depends on the metric we start with and its derivatives and can

be chosen to depend continuously (in the C∞-topology) on the given metric.

Proof of Lemma 3.8. Let (x, y, t) ∈ Mγ . First we show that the direction tangent to

the curve γ is a principal direction of Mγ in Sp ×Dq × R. Let l be a geodesic ray in

Dq connecting (x, 0) and (x, y). By γl we denote the curve Mγ ∩ l×R and we take γ̇l

as the tangent vector belonging to this curve. Let sMγ and sγl be the shape operators

of Mγ and γl in Sp×Dq ×R and l×R. Both of these shape operators shall be chosen

with respect to the outward pointing unit vector field η. By [14, p. 77] we know that

η is tangential to l × R, hence it can be used as a normal vector field for γl in l × R.

sMγ (γ̇l) = −∇Sp×Dq×Rγ̇l
η

= (−∇Sp×Dq×Rγ̇l
η)> + (−∇Sp×Dq×Rγ̇l

η)⊥︸ ︷︷ ︸
=0

= −∇l×Rγ̇l
η = sγl(γ̇l).

Here, (−∇Sp×Dq×Rγ̇l
η)> shall be the part of −∇Sp×Dq×Rγ̇l

η which is tangent to l × R.

This, combined with the fact that l × R is totally geodesic in Sp ×Dq × R, explains,

why (−∇Sp×Dq×Rγ̇l
η)⊥ = 0 (see 2.39). Since T(x,y,t)γl is a one dimensional subspace, γ̇l

is an Eigenvector of sγl and whence a principal direction of Mγ . Its principal curvature

is the curvature k of γ as l was chosen as a geodesic ray.

We now take an orthonormal basis (e1, . . . , en) of principal directions of Mγ , such

that e1 = γ̇l, (e2, . . . , eq) are tangent to Sq−1(r) and (eq+1, . . . , en) are tangent to

Sp. Furthermore, we can decompose η = cos(θ)∂t + sin(θ)∂r, where ∂t denotes the R
direction and ∂r is the radial direction.
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Next, we will compute the principal curvatures (λ1, . . . , λn) of (e1, . . . , en). The

principal curvature of e1 is k. Since (e2, . . . , en) are eigenvectors of sMγ , we have:

λj = λj · g(ej , ej) = g(λjej , ej)

= g
(
sMγ (ej), ej

) (2.41)
= g

(
−∇Sp×Dq×Rej η, ej

)
= g

(
−∇Sp×Dq×Rej (cos θ · ∂t), ej

)
+ g
(
−∇Sp×Dq×Rej (sin θ · ∂r), ej

)
.

Since ∂t and θ are constant in every ej direction, we get:

∇Sp×Dq×Rej (cos θ · ∂t) = ∂j cos θ · ∂t + cos θ · ∇Sp×Dq×Rej ∂t = 0

∇Sp×Dq×Rej (sin θ · ∂r) = ∂j sin θ · ∂r + sin θ · ∇Sp×Dq×Rej ∂r

= sin θ · ∇Sp×Dq×Rej ∂r = − sin θ · λSp×Sq−1

j ,

where λS
p×Sq−1

j is the principal curvature of ej as a principal direction of Sp×Sq−1 in

Sp ×Dq. The last equality follows from the fact that ∂r is normal to Sp × Sq−1.

We get for all j ≥ 2:

λj = sin θ · λSp×Sq−1

j

and λS
p×Sq−1

2 , . . . , λS
p×Sq−1

q = −1
r + O(r) (2.66) and λS

p×Sq−1

q+1 , . . . , λS
p×Sq−1

n = O(1),

as the curvature of Sp is bounded. All in all, we get:

λj =


k if j = 1

sin θ ·
(
−1
r +O(r)

)
if 2 ≤ j ≤ q

sin θ ·O(1) if q + 1 ≤ j ≤ n.

Now we are able to compute the scalar curvature. Since (e1, . . . , en) are principal

directions, with the notation of (2.40) II(ei, ej) = h(ei, ej)η = g
(
ei, s

Mγ (ej)
)
η =

λjg(ei, ej)η = δijλj · η. And by the Gauss curvature equation (2.37):

RmMγ (ei, ej , ej , ei) = RmSp×Dq×R(ei, ej , ej , ei) + g
(
II(ei, ei), II(ej , ej)

)
− g
(
II(ei, ej), II(ei, ej)

)︸ ︷︷ ︸
=0

= RmSp×Dq×R(ei, ej , ej , ei) + λiλj .

As (∂r, e2, ..., en) form a basis of the tangent space of Sp×Dq, we have for 2 ≤ i, j ≤ n
that

RmSp×Dq×R(ei, ej , ej , ei) = RmSp×Dq(ei, ej , ej , ei)
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and

RmSp×Dq×R(e1, ej , ej , e1) = RmSp×Dq×R(− cos θ · ∂r + sin θ · ∂t, ej , ej ,− cos θ · ∂r + sin θ · ∂t)

= RmSp×Dq×R(− cos θ · ∂r, ej , ej ,− cos θ · ∂r)

+RmSp×Dq×R(− cos θ · ∂r, ej , ej , sin θ · ∂t)

+RmSp×Dq×R(sin θ · ∂t, ej , ej ,− cos θ · ∂r)

+RmSp×Dq×R(sin θ · ∂t, ej , ej , sin θ · ∂t)

= cos2 θ ·RmSp×Dq×R(∂r, ej , ej , ∂r)

= cos2 θ ·RmSp×Dq(∂r, ej , ej , ∂r)

= (1− sin2 θ) ·RmSp×Dq(∂r, ej , ej , ∂r).

Using the definition of the curvature endomorphism and its symmetries we see:

RmSp×Dq×R(∂r, ej , ej , ∂t) = g
(
R(∂r, ej , ej)︸ ︷︷ ︸
orthogonal to ∂t

, ∂t
)

= 0

RmSp×Dq×R(∂t, ej , ej , ∂r) = RmSp×Dq×R(ej , ∂t, ∂r, ej) = RmSp×Dq×R(∂r, ej , ej , ∂t)

RmSp×Dq×R(∂t, ej , ej , ∂t) = g(R(∂t, ej , ej), ∂t)

R(ej , ∂t, ∂t) = ∇ej ∇∂t∂t︸ ︷︷ ︸
=0

+∇∂t ∇ej∂t︸ ︷︷ ︸
=0

+∇[∂t, ej ]︸ ︷︷ ︸
=0

∂t = 0

Shuffling all these formulae together, we obtain:1

∑
i<j

λiλj = k

q∑
i=2

λi + k
n∑

i=q+1

λi +
∑

2≤i<j≤q
λiλj +

∑
2≤i≤q<j≤n

λiλj +
∑

q<i<j≤n
λiλj

= sin θ · k · (q − 1) ·
(
−1

r
+O(r)

)
+ k ·O(1) · sin θ

+
(q − 1)(q − 2)

2︸ ︷︷ ︸
=(q−1

2 )

·
(
−1

r
+O(r)

)2︸ ︷︷ ︸
=

(
1
r2

+O(1)

) · sin
2 θ

+(q − 1) ·
(
−1

r
+O(r)

)
·O(1) · sin2 θ +O(1) · sin2 θ

= − sin θ · k · q − 1

r
+ sin θ · k · (q − 1) ·O(r) + k · sin θ ·O(1)

+ sin2 θ · (q − 1)(q − 2)

2 · r2
+ sin2 θ · (q − 1)(q − 2)

2
·O(1)︸ ︷︷ ︸

=O(1)

+
q − 1

r
· sin2 θ ·O(1)

+(q − 1) · sin2 θ ·O(r) + sin2 θ ·O(1)

= sin2 θ ·O(1) + k · sin θ ·
(
−q − 1

r
+O(1)

)
+ sin2 θ ·

((q − 1)(q − 2)

2 · r2
+
q − 1

r
·O(1)

)
+ sin θ · k · (q − 1) ·O(r).

1This is the point, where the mistake in [14] occurs:
(
q−1
2

)
is miscounted as (q − 1)(q − 2).
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And finally:

κMγ =
∑
i 6=j

RmMγ(ei, ej , ej , ei) = 2
∑
i<j

RmMγ(ei, ej , ej , ei)

= 2
∑
i<j

(
RmSp×Dq×R(ei, ej , ej , ei) + λiλj

)
= 2

∑
i<j

(
RmSp×Dq(ei, ej , ej , ei) + λiλj

)
+ sin2 θ · 2 ·

n∑
j=2

RmSp×Dq(∂r, ej , ej , ∂r)︸ ︷︷ ︸
=2·RicSp×Dq (∂r,∂r)=O(1)

= κS
p×Dq + 2

∑
i<j

λiλj + sin2 θ ·O(1)

= κS
p×Dq + sin2 θ ·O(1) + k · sin θ ·

(
−2 · (q − 1)

r
+O(1)

)
+ sin2 θ ·

((q − 1)(q − 2)

r2
+

2 · (q − 1)

r
·O(1)

)
+ sin θ · k · (q − 1) ·O(r).

Remark 3.12. The same proof also works if we take a closed submanifold Np with

trivial normal bundle instead of the embedded surgery sphere Sp. We then start with

an embedding Np ×Dq →M and derive the same curvature formula:

κMγ = κN
p×Dq + sin2 θ ·O(1) + k · sin θ ·

(
−2 · (q − 1)

r
+O(1)

)
+ sin2 θ ·

((q − 1)(q − 2)

r2
+

2 · (q − 1)

r
·O(1)

)
+ sin θ · k · (q − 1) ·O(r).
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3.2.2 The initial bending

In the beginning we have sin θ = 0 and all terms except for κS
p×Dq in (3.8) vanish.

Since M is a psc manifold, this is positive. We leave r ≡ r0 for a short time and

then perform a small bend of γ, which means, we choose k (the curvature of γ) as a

continuous bump function in r.

k

rr1

Figure 3.7: The bump function k(r) for the initial bending

Since every term in the formula depends continuously on k (∆θ =
∫
kds), we can

maintain κMγ > 0 (this is an open condition), if the bump function is small enough.

After this small bending we take γ as a straight line (θ ≡ θ0) until r is small enough,

so that we can control the O(1) and O(r) terms in (3.8).

Ɣ

r

r1

θ0

Figure 3.8: Result of the initial bending
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3.2.3 The final bending

Let θ ≥ θ0 > 0. We want κMγ > 0.

0 < KMγ

⇐⇒ 0 < κS
p×Dq + sin2 θ ·O(1) + k · sin θ ·

(
−2 · (q − 1)

r
+O(1)

)
+ sin2 θ ·

((q − 1)(q − 2)

r2
+

2 · (q − 1)

r
·O(1)

)
+ sin θ · k · (q − 1) ·O(r)

⇐⇒ k · sin θ · [2 · (q − 1)

r
+O(1) + (q − 1) ·O(r)]

< κS
p×Dq + sin2 θ ·

(
O(1) +

(q − 1)(q − 2)

r2
+

2 · (q − 1)

r
·O(1)

)
⇐⇒ k · [2 · (q − 1) +O(r) + (q − 1) ·O(r2)]

<
κS

p×Dq · r
sin θ

+ sin θ ·
(
r ·O(1) +

(q − 1)(q − 2)

r
+ 2 · (q − 1) ·O(1)

)
⇐⇒ k · [1 +O(r) +O(r2)]

<
κS

p×Dq · r
2 · (q − 1) · sin θ

+
sin θ · r
2(q − 1)

·O(1) + sin θ ·
((q − 2)

2 · r
+O(1)

)
.

Let C > 0 be the constant from (3.11). Then:

k · [1 +O(r) +O(r2)] <
κS

p×Dq · r
2 · (q − 1) · sin θ

+
sin θ · r
2(q − 1)

·O(1) + sin θ ·
((q − 2)

2 · r
+O(1)

)
⇐ k · [1 + C · r + C · r2]︸ ︷︷ ︸

< 3
2

for r small enough

<
κS

p×Dq · r
2 · (q − 1) · sin θ︸ ︷︷ ︸

>0

− sin θ · r
2(q − 1)

· C + sin θ ·
((q − 2)

2 · r
− C

)

⇐ 3
2 · k ≤ sin θ

2 · r

(
−r2 · C

q − 1
+ (q − 2)− C · r2︸ ︷︷ ︸

→(q−2)≥1 for r→0

)
︸ ︷︷ ︸

> 3
4

for r small enough

⇐ k ≤ sin θ

4 · r
.

In other words: For some r0 > 0 we have: If r ≤ r0 and k = sin θ
4·r , then

κMγ > 0.

Remark 3.13. This is the point where we see that the mistake in the curvature for-

mulae does have some significance. In the formulae of [6], [13] and [14], we either

have k · sin θ · (q−1)
r instead of k · sin θ · 2·(q−1)

r or 2 · (q−1)(q−2)
r2

instead of (q−1)(q−2)
r2

. In

both cases we can derive the condition k = sin θ
2·r for positive scalar curvature instead of

k = sin θ
4·r . If (q − 2) is at least 2, i.e. q is at least 4, we can get k = sin θ

2·r and we can

follow the proof of [6] and [13]. However, if q = 3, we have to find another argument.
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In the end, γ should look like this:

r0

r8

t0 t8

initial bending

nothing happens

nothing happensinteresting part

r1

r

r

t

Figure 3.9: The graph of the bending map γ

In the interesting part (or even right after the initial bending), γ can be seen as a

curve parametrized in t:

γ(t) =

(
t

f(t)

)
for some height function f . From [1, p. 41], we know that the curvature of γ is given

by

k =
det(γ̇, γ̈)

‖γ̇‖3
=

f ′′(√
1 + f ′2

)3
sin θ =

1

‖γ̇‖
=

1√
1 + f ′2

.

= t' = 1

= || Ɣ||
θ

Figure 3.10: Computing the sine as opposite side
hypotenuse
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Hence,

k =
sin θ

4 · r
⇐⇒ f ′′(√

1 + f ′2
)3 =

1

4 · f ·
√

1 + f ′2
⇐⇒ f ′′ =

1 + f ′2

4 · f
.

If this differential equation yields a solution which is nice enough, we are done with

the proof of (3.1). This is ensured by the following lemma.

Lemma 3.14. The second order ordinary differential equation

f ′′ =
1 + f ′2

a · f
(3.15)

has for a > 0 and starting values f(t0) > 0 and f ′(t0) < 0 a solution, such that:

1. f is defined on a closed interval [t0, T ], T > t0

2. f is strictly positive.

3. f ′ ≤ 0 and f ′(t) = 0 ⇐⇒ t = T .

Proof. A solution of the differential equation

f ′ = −
√
f

2
a · c− 1,

where c is a constant depending on the starting values will be a solution of equation

(3.15). This can be seen by differentiating the equation from above:

f ′′ =
1

−2

√
f

2
a · c− 1

· c · 2

a
f

2
a
−1 · f ′ = 1

a
· c · f

2
a
−1

=
1

a · f
(f

2
a · c− 1︸ ︷︷ ︸

=f ′2

+1) =
1 + f ′2

a · f
.

From f(t0) > 0 and f ′(t0) < 0 we know that c has to be greater then 0.

Furthermore, we see:

f ′ < 0 ⇐⇒ f
2
a >

1

c
⇐⇒ f >

(1

c

)a
2 > 0 (3.16)

f ′ = 0 ⇐⇒ f
2
a =

1

c
⇐⇒ f =

(1

c

)a
2 . (3.17)

As we are only interested in this solution as long as f ′ ≤ 0, we know from (3.16

and 3.17) that in this case f is bounded from below by
(

1
c

)a
2 > 0 and by f(t0) from

above. Until now, we know that there is a solution to the differential equation which

is strictly decreasing in the beginning. We only need to show that there is a point T ,

where f ′(T ) = 0.

f ′′ is given by

f ′′ =
f

2
a · c
a · f

=
c

a
· f

2
a
−1 ≥

 c
a ·B

2
a
−1 > 0 if a ∈ (0, 2]

c
a ·
(

1
c

) 2
a
−1

> 0 if a > 2
(3.18)
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and thus f ′′ is uniformly bounded from below.

If f ′ was strictly positive, f would be strictly decreasing for t → ∞. Since f is

bounded from below, it had to converge to some constant A. In this case, every

derivative of f would converge to 0. This is a contradiction to the fact that f ′′ is

bounded from below by some positive constant (see 3.18). Hence, there has to be some

T > t0, such that f ′(T ) = 0. This concludes the proof of (3.14).

Remark 3.19. If a = 2 as in [6], [13] and [14], one can write down an explicit

solution:

f(t) =
1

A
+
A

4

(
t−B

)2
for some constants A,B > 0.





4 The Gromov-Lawson-Chernysh

construction

In this chapter, we are going to construct a map that deforms a compact family of

metrics into a family of standard metrics. This result was first proven by Pawel

Gajer in [5] for only 1 metric instead of a family of metrics.

Recall Lemma (2.66):

Lemma 2.66 ([6, p. 425], [14, p.73]). We have:

1. The principal curvature of an embedded hypersurface Sn−1(ε) are of the form

−1
ε +O(ε) for small epsilon.

2. The term O(ε) depends on the metric and its derivatives.

3. Let gε be the induced on Sn−1(ε) and let g0,ε be the standard euclidian metric of

curvature 1
ε2

. Then as ε → 0, 1
ε2
gε → 1

ε2
g0,ε = g0,1 in the C2-topology described

in (2.7).

As an easy corollary, we get:

Corollary 4.1. If (gs)s∈S is a compact family of metrics, the constant C (3.11) in the

proof of the Gromov-Lawson surgery theorem can be chosen, such that it works for

all the metrics gs.

41
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4.1 Admissible curves

Definition 4.2. Let (gs)s∈S be a continuous family of metrics on M over a compact

space S.

An admissible curve is a smooth curve γ : R→ R2 = {(x, t)} that satisfies the following

conditions:

1. γ(0) = (0, r0) for an r0 > 0 and γ(t) = (0, r0 − t) for all t ≤ 0, hence γ̇(0) =

(0,−1).

2. γ intersects the t-axis only once, at a right angle and follows the arc of a circle

around this point.

3. γ is symmetric to the point L ∈ R where γ crosses the t-axis, i.e. γ(L − s) =

Rt ◦ γ(L+ s), where Rt is the reflection about the t-axis.

4. The injectivity radius of the exponential map of all metrics (gs) is strictly greater

than r0.

The set of admissible curves with respect to the family S will be denoted by ΓS and

will be equipped with the C∞-topology as a subspace of C∞(R,R2).

r
0

L

s1

s5s4

s3

s2

Figure 4.1: An admissble curve on [0, L]
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Remark 4.3. Any curve γ ∈ ΓS is uniquely determined by its part on [0, L] and also

by its curvature function on [0, L].

The r-axis is an admissible curve.

s s s s

s

1 2 3 4

5

L

Figure 4.2: The curvature function of an admissible curve on [0, L]

Remark 4.4. The curve γ from the proof of (3.1) is an admissable curve. For such a

curve γ we divide the interval [0, L] into 6 sub intervals:

On [0, s1] the curve goes straight down.

On [s1, s2] the initial bending takes place.

On [s2, s3] the curve follows a straight line.

On [s3, s4] is the part where the upwards beding is performed.

On [s4, s5] the curve follows a straight horizontal line.

On [s5, L] it is bent downwards and finally intersects the t-axis.

The division into these intervals can be seen in (Figure 4.1 & Figure 4.2). We call an

admissible curve that originates from the proof of (3.1) a Gromov-Lawson curve or

a GL-curve.
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Proposition 4.5. The map

C∞(R,R) → C∞(R,R2)

k 7→ γ(k),

which sends a curvature function k(s) to the admissible curve corresponding to it, is

continuous.

Proof. γ(k) can be defined as the unique solution of the second order differential equa-

tion:

γ(0) = (0, r0)

γ̇(0) = (0,−1)

γ̈(s) =

(
0 1

−1 0

)
· γ̇(s) · k(s).

By (2.57) this map is continuous. As any admissible curve is uniquely determined by

its part on [0, L] this completes the proof.

Definition 4.6. The Neck Tγ(s) ⊂ M × R of an admissible curve near some closed

submanifold N with trivial normal bundle is defined as:

Tγ(gs) = {(x, y, t) ∈ N ×Dq × R : γ(t) = ‖y‖gs}.

Figure 4.3: The neck of an admissible curve for N = ∗
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Figure 4.4: The neck of an admissible curve for an embedded N = S1.

Proposition 4.7 ([3, pp. 3-4]). Let (gs)s∈S be a compact family of Riemannian metrics

on M.

Then there exists a continuous map

ΓS × S → Emb(M,M × R),

where Emb(M,M ×R) ⊂ C∞(M,M ×R) is equipped with the subspace topology. This

map satisfies the following properties:

1. The resulting embedding fγ,s is constant outside the tubular neighbourhood of

radius r0 around N , which will be denoted by Tbr0(N), i.e. f(x) = (x, 0) on

Tbr0(N).

2. fγ,s diffeomorphically maps Tbr0(N) onto the neck of Tγ(gs), which is the same

as TbL(Nγ(gs)), where Nγ(gs) is the submanifold of Tγ(gs) which is diffeomorphic

to N under the projection map M × R→M .
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Proof. Let L > 0 be the length of the admissible curve γ ∈ ΓS and let φ be a smooth,

strictly increasing function depending continuously on r0 and L:

φ(r) =

r r ≤ δ

r + r0 − L r ≥ L

for some 0 ≤ δ < r0.

L

Figure 4.5: The function φ

The map φ gives rise to a rescaling diffeomorphism φ : νNM → νNM , (x, v) 7→ (x, φ(‖v‖)
‖v‖ ·v).

Let Nγ be the submanifold of Tγ(gs) which is diffeomorphic to N under the projection

map p : M × R→M , i.e. Nγ = p−1(N) ∩ Tγ . The composition of maps

TbL(Nγ)
(exp⊥

Tγ (gs)
)−1

−→
(
ν
Nγ(gs)
Mγ(gs)

)
L

dp−→
(
νNM
)
L

φ−→
(
νNM
)
r0

exp⊥gs−→ Tbr0(N)

then defines a diffeomorphism by (2.26), which maps points x that have distance equal

to r0 to N to (x, 0). Here
(
νNM
)
L

denotes all vectors of length at most L in
(
νNM
)
. By

mapping all points outside of Tbr0(N) to (x, 0), we get the required embedding. It

remains to be shown that the map (γ, gs) 7→ fγ,gs := exp⊥Tγ(gs)
◦dp−1

γ,gs ◦φ
−1 ◦ (exp⊥gs)

−1

is continuous.

By [9, p. 58 & p. 72] the map exp(V ) = αV (1) is defined as the solution of the
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differential equation

α(0) = π(V )

α̇(0) = V

Dtα ≡ 0, which can be expressed in local coordinates:

ẍk(t) + ẋi(t)ẋj(t)Γkij(x(t)) = 0.

Since the Christoffelsymbols depend continuously on the metric and its first derivative

we derive continuity of γ, gs 7→ φ−1 ◦ (exp⊥gs)
−1 by (2.57).

Let’s examine dp−1 next. Let
(
(x, t), v

)
∈ νNγMγ

. Then dp
(
(x, t), v

)
= (x, v), as any

admissible curve ends with a vertical segment and thus a vector normal to Nγ is parallel

to M and can be interpreted as a normal vector of N in M (see (Figure 4.6)).

N

N

dp

Ɣ

((x,t),v)

(x,v)

Figure 4.6: The differential of the projection map

So we get that dp−1
γ (x, v) =

(
(x, t), v

)
, where t is the unique real number, such that

(x, t) ∈ Nγ . If (γn) is a sequence converging to γ in C∞, we get that tn converges to

t. For the derivative of dp−1
γ we notice:

p−1 : M → M × R

x 7→ (x, t)

dp−1 : TM → TM × TR

(x, v) 7→
(
(x, v), (t, 0)

)
ddp−1 : TTM → TTM × TTR(

(x, v), w
)
7→

(
((x, v), w), (t, 0, 0)

)
.

Analogously, one can compute any derivative of dp−1 and, since tn → t for all these

maps, dp−1
γn → dp−1

γ in the C∞-topology.
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The last map we have, is again an exponential map, which is defined as the solution

of an ordinary differential equation:

α(0) = π(v, 0), α̇(0) = (v, 0), D̃tα̇ ≡ 0.

The Christoffel symbols defining D̃tα̇ come from the metric (gs+dt2)|Mγ,gs
, depending

continuously on gs. Again by (2.57) we derive continuity of this map and whence we

get that the constructed map is continuous.

Corollary 4.8. Let (gs)s∈S be a compact family of metrics and let Np ⊂M be a closed

submanifold of codimension at least 3. Then there exists a GL-curve γ ∈ ΓS, such

that Tγ(gs) has positive scalar curvature for alle s ∈ S. Furthermore, we can choose

γ, such that k ≤ sin(θ)
4·r on [s3, s4] implies positive scalar curvature on Tγ(gs) and from

(3.14) we know that we can choose the curve γ, such that k ≤ sin(θ)
5·r on [s3, s4] will be

satisfied.

Proof. This is a direct consequence of (2.66), (4.1) and the original Gromov-Lawson

construction (3.1).

Definition 4.9. A δ-cutoff function δs0(s) at a point s0 ∈ [0, L] is a smooth, strictly

decreasing map [0, L]→ [0, 1], such that δs0 |[0,s0] = 1 and δs0 |[s0+δ,L] = 0.

Proposition 4.10 ([3, p. 5]]). Let γ ∈ ΓS be a GL-curve with k ≤ sin(θ)
5·r on [s3, s4].

Then there is a δ > 0, such that for all s0, s ∈ [s3, s4] and for γ̃ = γ(k̃) = γ(δs0 · k) the

following inequality holds:

k̃(s) := δs0(s)k(s) ≤ sin(θ̃(s))

4 · r̃(s)
.

Here θ̃ and r̃ belong to the curve γ̃.

Proof. Consider the function

F : [s3, s4]× [0, 1] → R

(s, t) 7→ k(s+ t)− sin(θ(s))

4 · r(s)
.

Then, F (s, 0) = k(s)− sin(θ(s))
4·r(s) ≤ A0 < 0 for some A0 < 0 and so there exists a δ > 0,

such that F ([s3, s4]× [0, δ]) ⊂ (−∞, A1) for some A1 < 0. Let δs0 be a cutoff function.

Then we have for all s ∈ [0, δ]:

k(s+ s0) <
sin(θ(s))

4 · r(s)
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and thus

k̃(s0 + s) = δs0k(s0 + s)

≤ k(s0 + s) <
sin(θ(s0))

4 · r(s0)
=

sin(

increasing︷ ︸︸ ︷
θ̃(s0) )

4 · r̃(s0)︸ ︷︷ ︸
decreasing

≤ sin(θ̃(s0 + s))

4 · r̃(s0 + s)

and therefore

k̃(s) ≤ sin θ̃(s)

4 · r̃(s)

for all s ∈ [s3, s4].

Theorem 4.11 ([3, p. 6]). Let (gs)s∈S be a compact family of metrics. Let γ ∈ ΓS be

a GL-curve from (4.8) that satisfies k ≤ sin(θ)
5·r on [s3, s4]. Then there is a continuous

map α1 : I → ΓS, such that

1. α1(0) = γ

2. α1(1) = {r-axis}

3. Tα1(t)(gs) has positive scalar curvature for every s ∈ S, t ∈ I.

r
0

L

s1

s5s4

s3

s2

Figure 4.7: Pulling back of an admissible curve
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Proof. Instead of deforming the curve itself, we deform its curvature function k ∈
C∞([0, L],R) to k ≡ 0. We will perform the deformation, such that the first and

second bend of γ stay at the same place.

Let δ < min{s1, s5 − s4}. We define p(t) := s4 − s4 · t and take a family of δ-cutoff

functions δp(t), such that δp(t)+t0(s) = δp(t)(s − t0), i.e. we pick one δ-cutoff function

and shift it for every s0. Then δp(tn)(s) = δp(t)+p(tn)−p(t)(s) = δp(t)(s − p(tn) + p(t))

converges in the C∞-topology to δp(t).

We then take kt = k̃p(t) on [0, p(t) + δ] and leave k ≡ 0 until the point st, where

the corresponding curve γt crosses the r = r∞ line. On the last part [st, Lt] we take

kt(s) = δst(st + δ − s) 1
εt

, where εt and Lt are the unique numbers, such that∫
[st,Lt]

kt(s)ds = −
∫

[0,st]
kt(s)ds(

γ(kt)
)
(Lt) ∈ t-axis.

We now need to show that this map is continuous in t. First we note that p(t), st, Lt

and εt depend continuously on t. Now let (tn) be a sequence converging to t. By (2.52)

we can choose the identity as charts. We divide this proof into 3 cases:

Case 1: x ∈ [0, p(t) + δ]

From the product rule, we know:

k
(m)
tn (s) =

(
δp(tn)(s)k(s)

)(m)
=

m∑
l=0

(
m

l

)
δ

(l)
p(tn)(s)︸ ︷︷ ︸
→δ(l)

p(t)
(s)

k(m−l)(s)

→
m∑
l=0

(
m

l

)
δ

(l)
p(t)(s)k

(m−l)(s) =
(
δp(t)(s)k(s)

)(m)
= k(m)(s).

Case 2: x ∈ [p(t) + δ, st]

Since stn → st we get that k
(m)
tn (s)→ 0 for every m ≥ 0.

Case 3: x ∈ [st, Lt]

This also follows from convergence of the parameters and the fact that the parame-

ters and the δ-cutoff functions depend continuously on t.

The last thing to be verified is positive scalar curvature:

On [s1, s2] we only make the small bump function smaller, so the scalar curvature

remains positive.

On [s2, s3] and on [s4, s5] we don’t change anything.

On [s3, st] we have positive scalar curvature due to (4.10).

On [st, Lt] we are performing a downwards bend, which has positive scalar curvature,

as it always satisfies k ≤ 0 ≤ sin(θ)
4·r and takes place below r = r∞. This implies positive

scalar curvature.

Our goal is to deform a compact family of metrics into standard metrics. The

first deformation will be taking a compact family (gs)s∈S and pushing a small tubular
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neigbourhood of N out by going backwards through the deformation from (4.11). This

will allows us to deform the metric on M by deforming the metric on the neck of γ:

S × I S × ΓS S × Emb(M,M × R)

(s, t) (s, α1(1− t)) (s, fα1(1−t),s).

(4.11) (4.7)

4.2 Deformation into standard metrics

In this section we deform the metric on the neck to one that has standard form on a

small tubular neighbourhood of N . For the rest of this chapter let gN be a fixed metric

on N . This does not need to be a psc metric. Furthermore, let g0 be a torpedo metric

on Dq of radius T0, where T0 can be chosen to be arbitrarily small but then remains

fixed throughout this chapter. Without loss of generality we may assume that gN + g0

has positive scalar curvature.

Corollary 4.12. Let g be a metric on M . Then for ε small enough there is a homotopy

from g restricted to Np×Dq(T0) to the metric h := gN + g0 through psc metrics. This

homotopy depends continuously on the given metric g.

Proof. We only have to show the continuity. The rest follows from (3.5).

Since the homotopy in (3.5) originates from (2.65), it is given by a linear path. So

it suffices to show that (g, t) 7→ (1 − t)g + th is continuous in t and g, which follows

immediately from the triangular inequality: Let (gn, tn)→ (g, t). Then:

‖(1− t)g + th, (1− tn)gn + tnh‖kψ,ϕ ≤ ‖(1− t)g + th, (1− tn)g + tnh‖kψ,ϕ
+ ‖(1− tn)g + tnh, (1− tn)gn + tnh‖kψ,ϕ

≤ ‖(1− t)g + th, (1− tn)g + tnh‖kψ,ϕ︸ ︷︷ ︸
→0 by (2.64)

+|1− tn| ‖g, gn‖kψ,ϕ︸ ︷︷ ︸
→0

+ ‖tnh, tnh‖kψ,ϕ︸ ︷︷ ︸
=0

→ 0.

Theorem 4.13 ([3, p. 7]). Let (gs)s∈S be a compact family of metrics and let γ be a

GL-curve which originates from (4.8). Then there exists a continuous map

α2 : I × S → R(M × R),

such that:

1. α2(s, 0) = gs + dt2

2. α2(s, λ)|Mγ is a psc metric
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3. α2(s, t) = gs + dt2 on a neighbourhood of M in M × R

4. α2(s, 1)|Mγ = gN + g0 on a neighbourhood of Nγ.

Proof. We want to deform the metric on Tγ(gs), such that it stays the same near M .

We divide Tγ(gs) into 3 parts:

N'

N'' N'''

Figure 4.8: The admissible curve γ

On N ′ we choose the homotopy to be constant.

On N ′′′ we take the homotopy G from (gs + dt2)|N×Dq(ε) to gN + g0 (4.12). On the

boundary ∂(N×Dq(ε)) = N×Sq−1(ε) this gives a homotopy from gs to the restriction

of gN + g0.

On N ′′ we perform the deformation as follows: Let

hλ(s) = Gλ(s)|N×Sq−1

be the restriction of the above homotopy. By (2.68) we get that there is an a > 0 such

that the metric

ht/a(s) + dt2

on N ′′ is a psc metric. For (x, (t/a)) ∈ Sq−1(ε)× [0, 1] we get a homotopy

H : (λ, s) 7→ h(λt)/a(s) + dt2.

Then H(0, s) = gs + dt2 and H(1, s) = ht/a(s) + dt2 and for t = a we have H(λ, s) =

hλ + dt2, thus H(λ, s) = hλ(s) on the boundary of N ′′ towards N ′′′.

The deformation can now be written as:

α2(t, s)|Mγ =


gs + dt2 on N ′

H(t, s) on N ′′

G(t, s) on N ′′′.

We obtain a metric on M × R by extending it arbitrarily.

Furthermore, on N ′′′ we have α(1, s) = gN + g0.
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We can now extend the diagram from (4.1):

I × S × Emb(M,M × R) S ×R(M × R)× Emb(M,M × R) S ×R+(M)

(s, t, fγ,s)
(
s, α2(t, s), fγ,s

) (
s, (fγ,s)

∗α2(t, s)
)

(4.13) (2.55)

Since N ′′′ ∼= N × Dq, we get that τs = (fγ,s)
−1 is a tubular neighborhood that

depends continuously on s. So we constructed a deformation:

α1,2 : I × S → R+(M),

such that for every s there is a tubular neighbourhood τs depending continuously on

s, satisfying

τ∗s
(
α1,2(1, s)

)
= gN + g0. (4.14)

4.3 Final deformation

So far we we deformed a family of metrics (gs)s∈S in a way that any resulting metric

gs satisfies (4.14). All the τs are given by (fγ,s)
−1 = exp⊥Tγ(gs)

◦dp−1
γ,gs ◦φ

−1 ◦ (exp⊥gs)
−1.

By the above computation (4.6) the differential of these maps at N is the same for all

s. Let τ be a tubular neighbourhood of N which satisfies D0(τ−1 ◦ τs) = id on the Dq

part. We will deform the metrics, such that all of them have the standard form gN +g0

in the tubular neighbourhood τ . For this, we will reexamine the proof of uniqueness

of tubular neigbourhoods.

Theorem 4.15. Let (gs)s∈S be a compact family of metrics and τs be a family of

tubular neighbourhoods, depending continuously on s satisfying τ∗s gs = gN + g0. Then

there is a continuous map

α3 : I × S → R+(M),

such that τ∗(α3(1, s)) = gN + g0 for all s ∈ S.

Proof. First we fix a radial diffeomorphism Φ: Dq ∼= Rq, which is the identity in a

small neighbourhood of the origin. Instead of giving the homotopy of R+(M), we give

a diffeotopy of M

I × S ×M →M,

such that H(s, 0) = id and τ ◦H(s, 1) = τs.

The first step is to reduce to the situation τs(N×Dq) ⊂ τ(N×Dq). This is achieved

by a applying a straight line homotopy of Dq: (t, v) 7→ v + t(εv − v) for some small

enough ε.

Since τs(N ×Dq) ⊂ τ(N ×Dq) and since τ, τs are embeddings, we can consider the

smooth map

hs := Φ ◦ τ−1 ◦ τs ◦ Φ−1 : N × Rq → N × Rq.
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This depends continuously on the metric gs. We can now define a diffeotopy:

Hs : I ×N × Rq → N × Rq

(t, v) 7→ Hs(t, v) =

1
ths(tv) t > 0

D0hs · v = v t = 0.

The map Hs is smooth in v and continuous in t and s. Furthermore we have

Hs(0, ) = D0hs = D0Φ ◦D0(τ−1 ◦ τs) ◦D0Φ−1 = D0Φ ◦D0Φ−1 = id

and

Φ−1 ◦Hs(1,Φ( )) = τ−1 ◦ τs.

So we get an isotopy of tubular neighbourhoods by

S × I ×N ×Dq S × I ×N × Rq N × Rq N ×Dq

(s, t, x, v) (s, t, x,Φ(v))
(
Hs(t,Φ(v))

) (
Φ−1 ◦Hs(t,Φ(v))

)
.

By applying τ we can transport this isotopy to M and we get an isotopy H̃s(t, ) =

τ ◦Hs(t, ) ◦ τ−1 of τ(N ×Dq) into itself. We have the following equations:

τ∗s H̃s(0, )∗gs = τ∗s gs

τ∗H̃s(1, )∗gs = τ∗(τ ◦Hs(1, ) ◦ τ−1)∗gs = τ∗(τ ◦ τ−1 ◦ τs ◦ τ−1)∗gs

= τ∗s gs = gN + g0.

By the isotopy extension theorem [8, p. 181] we get a family of diffeotopiesGs : I×M →
M depending continuously on s, which are constant outside of a small neighbourhood

of τ(N ×Dq) and agree on τ(N ×Dq) with Hs(t, ). Our homotopy of metrics then is

S × I → R+(M)

(s, t) 7→ Gs(t, )∗gs,

which satisfies

Gs(0, )∗gs = gs

τ∗Gs(1, )∗gs = τ∗s gs = gN + g0.

This is continuous by (2.55).

4.4 Putting the pieces together

In the last part of this chapter we will simply put the three homotopies together.

Theorem 4.16. Let q ≥ 3 and let τ : Np ×Dq ↪→ Mn be a tubular neighbourhood of

N in M . Let g0 be a torpedo metric of radius T0, let gN be a metric on N and let

(gs)s∈S be a compact family of psc metrics. Then there is a homotopy

GLC : I × S → R+(M),



4.4 Putting the pieces together 55

such that

GLC(0, s) = gs

τ∗GLC(1, s) = gN + g0.

This can be paraphrased to

GLC(1, s) ∈ R+
0 (M).

We call such a homotopy a Gromov-Lawson-Chernysh deformation or a GLC-

deformation for the family (gs)s∈S.

Let fγ,s be the embedding from (4.7). The homotopy GLC then can be written as:

GLC(λ, s) =


f∗α1(1−3λ),s

(
gs + dt2

)
if λ ∈ [0, 1/3]

f∗α1(0),s

(
α2(3λ− 1, s)

)
if λ ∈ [1/3, 2/3]

α3(3λ− 2, s) if λ ∈ [2/3, 1].

Remark 4.17. This deformation consists of first pushing out the neck belonging to

an admissible curve γ (4.11), then deforming the metric on the neck into a standard

form (4.13) and then pulling it back to M (4.7). Last but not least we use the unique

tubular neighbourhood theorem and the isotopy extension theorem to make sure that all

of these metrics have a standard form inside a fixed tubular neighbourhood (4.15).
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The problem associated with the Gromov-Lawson-Chernysh-deformation is that it

doesn’t preserve the property of a metric being standard during the deformation. For

this reason, we have to examine what happens inside the tubular neighbourhood τ ,

which means examining metrics on the disc. We start this chapter with the definition

of a warped metric.

In the entire chapter T0 shall be the radius belonging to a fixed torpedo metric g0.

5.1 Scalar curvature of a warped product metric

Definition 5.1. Let B ≥ 0. We define

WB := {h ∈ R+(Dq
T0

) : h = g(t)2dt2 + f(t)2dξ2, g(t) 6= 0, κ > B},

where dξ2 denotes the standard round metric on the sphere of radius 1. We call a

metric of the form h = g2dt2 + f2dξ2 a warped metric in the disc. Without loss of

generality, we may assume g > 0 and f ≥ 0.

Since g > 0, the map

ϕ : x 7→ G−1(‖x‖)
‖x‖

x,

where

G(t) =

∫ t

0
g(s)ds

is a radial diffeomorphism. Here ‖.‖ denotes the euclidian norm. Then the metric

ϕ∗h = h̃ can be computed as follows: Let X,Y be tangent vectors at a point t, s ∈
[0, T0]× Sq−1. Then

h̃(X,Y ) = ϕ∗h(X,Y ) = h ◦ (D(t,s)ϕ(X), D(t,s)ϕ(Y ))

= g(G−1(t))2dt2(D(t,s)ϕ(X), D(t,s)ϕ(Y ))

+f(G−1(t))2dξ2(D(t,s)ϕ(X), D(t,s)ϕ(Y )).

If X is a vector in the dξ-direction, D(t,s)ϕ(X) = X, since ϕ is radial. If X is in the

dt-direction:

D(t,s)ϕ(X) =
d

dx
|x=0ϕ

(
(t+ x)X

)
=

1

g(G−1(t))︸ ︷︷ ︸
=φ′(t)

·X.

57
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So, we can conclude our computation with

h̃(X,Y ) =


g(G−1(t))2 · dt2

(
1

g(G−1(t))
·X, 1

g(G−1(t))
· Y
)

if X,Y are in dt-direction

f(G−1(t))2 · dξ2
(
X,Y

)
if X,Y are in dξ-direction

0 else

=

(
g(G−1(t))

g(G−1(t))

)2

dt2 + f(G−1(t))2dξ2 = dt2 + f(G−1(t))2dξ2. (5.2)

h̃ is a metric on Dq
T (h), where T (h) = G(T0), which depends continuously on g and

therefore on h. Thus, we can assume without loss of generality that g ≡ 1 for the

computations on scalar curvature.

Proposition 5.3 ([2, p. 269]). If we identify {x ∈ Rq : 0 < ‖x‖ < T} with (0, T )×Sq−1

in polar coordinates, the smooth Riemannian metric dt2 + f2dξ2 extends to a smooth

Riemannian metric on {x ∈ Rq : ‖x‖ < T} if and only if f is the restriction of a

smooth odd function on (−T, T ) to (0, T ) with f ′(0) = 1.

The computation of the scalar curvature of a warped product metric can be found

in [3, pp. 11-12] and [14, p. 13] and they are based upon [2, pp. 265-270]:

Proposition 5.4. The scalar curvature of the metric h = dt2 + f2dξ2 is given by

κ = (q − 1)

(
(q − 2)

1− f ′2

f2
− 2

f ′′

f

)
. (5.5)

Corollary 5.6. The scalar curvature of the metric h = g2dt2 + f2dξ2 is given by

κ =
(q − 1)

f2g3

(
(q − 2)(g3 − f ′2g)− 2f ′′fg + f ′fg′

)
. (5.7)

Proof. The scalar curvature of the metric h = g(t)2dt2 +f2dξ2 at a point t is the same

as the scalar curvature of h = dt2 + f̃2dξ2 with f̃ = f ◦G−1 at the point G−1(t) (see

5.2). Then

κ = (q − 1)

(
(q − 2)

1− (f ◦G−1)′
2

(f ◦G−1)2
− 2

(f ◦G−1)′′

f ◦G−1

)

=
(q − 1)

f2g3

(
(q − 2)(g3 − f ′2g)− 2f ′′fg + f ′fg′

)
.

5.2 Deformation of warped metrics

5.2.1 Creating a collar

We fix a smooth function θ0 on R, such that θ0 is 0 on (−∞, 0] ∪ [ 1
20 ,∞), 0 ≤ θ0 ≤ 1

and θ0 6= 0. We then define a smooth function C, depending on (C1, t
∗) ∈ R2:

C(C1, t
∗) = C1

∫ t∗
20

0
θ0

( σ
t∗

)
dσ = C1 · t∗

∫ 1
20

0
θ0(σ̃)dσ̃︸ ︷︷ ︸

=const.

= C1 · t∗ · const. (5.8)
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Without loss of generality we may assume that θ0 is small enough, i.e. we may assume

that C(C1, t
∗) < 1 for all C1 ∈ [0, 1] and t∗ ∈ [0, T0/2].

Furthermore, we fix a family of strictly increasing Diffeomorphisms φt1,t2,t3 : R→ R,

continuously depending on t3 > t2 > t1, such that

1. φt1,t2,t3(0) = 0

2. φt1,t2,t3(t2) = t3

3. φ′t1,t2,t3 = 1 on [0, t1] ∪ [ t1+t2
2 ,∞).

t1 t2

t1

t3

Figure 5.1: The rescaling diffeomorphism φt1,t2,t3

One can construct this family for instance by taking a bump-function φ0 which is 0 on

(−∞, 0] ∪ [1,∞) and then solving the differential equation

φ′t1,t2,t3(t) = 1 +
1∫ 1

0 φ0(s)ds
φ0

( t− t1
t1+t2

2 − t1

)
(t3 − t2),

φt1,t2,t3(0) = 0.

The solution is given by

φt1,t2,t3(t) = t ·
(

1 +

∫ t
t1
φ0

(
s−t1

t1+t2
2
−t1

)
ds∫ 1

0 φ0(s)ds
(t3 − t2)

)
.

This allows us to define a family of radial diffeomorphisms Φt1,t2,t3 : Rq → Rq, contin-

uously depending on t1, t2, t3

Φt1,t2,t3(x) =
φt1,t2,t3(‖x‖)
‖x‖

x, (5.9)
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which satisfies:

1. Φt1,t2,t3(Dq
t2

) = Dq
t3

2. Φt1,t2,t3 = id on 0 ≤ ‖x‖ ≤ t1 and

3. Φt1,t2,t3 = (1 + t3 − t2) · id on t2+t1
2 ≤ ‖x‖ ≤ ∞.

Having constructed these diffeomorphisms, we are now able to define the deformation

of warped metrics on varying size discs, because we can then scale those discs back,

using this family of diffeomorphisms. In the next two lemmata we will therefore define

deformations on R instead of [0, T0].

One can interpret the following two lemmata (5.10 & 5.11) as first pushing ψ̃0 = idR

down a little (5.10), so that we get an interval inside of [0, T0], where it has a slope

that is constant C̃ < 1. This also means that we created an interval, where we can

estimate (f ◦ ψ̃)′ ≤ C̃ (provided f ′ ≤ 1), which will be helpful when estimating the

scalar curvature using the curvature formula (5.5). In the second lemma (5.11), we

will deform ψ0 = idR, such that there is a point t with f (n)(ψ1(t)) = 0 for all n ≥ 1.

This can be interpreted as creating a point, where the metric has the form dt2 + r2
0dξ

for some r0 > 0. In other words, we created a point, where the metric is the product of

a straight line metric with the standard round metric of the sphere of radius r0, which

can be seen as a collar.

In [3, p. 13], Chernysh describes these lemmata as first creating a large amount of

curvature arbitrarily close to the center of the disc (5.10) and then creating a collar

(5.11).

We will prove these two lemmata after we have seen why we need them.
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Lemma 5.10 ([3, p. 13]). Let A1 := {(C1, t
∗, α) ∈ [0, 1] × [0, T0/2] × [0, T0/2] : α <

t∗/2}.
There are continuous functions

ψ̃ : A1 × I × R→ R

and

T1 : I → R,

such that:

1. ψ̃λ,α(0) = 0, ψ̃λ,α(T1(λ)) = t∗

2. ψ̃0,α = id

3. ψ̃′′λ,α > 0 only if ψ̃λ,α ∈ [ 8
10 t
∗, 9

10 t
∗]

4. ψ̃′λ,α ≥ 1− C(C1, t
∗) ≥ 0

5. ψ̃′′λ,α ≤ C1

6. ψ̃′λ,α = 1− λ · C(C1, t
∗) > 0 when ψ̃λ,α ∈ [ α10 ,

8
10 t
∗]

7. ψ̃′λ,α = 1 on [0, α20 ] and when ψ̃λ,α ∈ [ 9
10 t
∗,∞).

α/20 α/10

(8/10)t*

(9/10)t*

t*

T1(λ)

slope = 1-C(C1,t*)α/10

Figure 5.2: Creating a slope
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Lemma 5.11 ([3, p. 15]). There are continuous functions

α : (0, 1]× (0, T0/2] → R

(C1,2, t
∗∗) 7→ α(C1,2, t

∗∗)

T2 : I × [t∗∗/2,∞) → R

(λ, T1) 7→ T2(λ, T1)

ψ : (0, 1]× (0, T0/2]× I × R → R

(C1,2, t
∗∗, λ, t) 7→ ψ

C1,2,t∗∗

λ (t) = ψλ(t),

such that α(C1,2, t
∗∗) ∈ (0, t∗∗/2) and:

1. ψλ(0) = 0, ψλ(T2(λ, T1)) = T1

2. ψ0 = id

3. ψ′λ(t) = 1 for t ∈ [0, α10 ] and if ψλ ∈ [ 9
10 t
∗∗,∞)

4. ψλ(t)′′ ≤ C1,2

t

5. 0 ≤ ψ′λ ≤ 1

6. ψ
(n)
1

(
α(C1,2, t

∗∗)
)

= 0 for all n ≥ 1.

Note that the dependence on (C1,2, t
∗∗) is omitted in this notation of ψλ.

α/10

(9/10)t**

t**

α

Figure 5.3: Creating a collar
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Lemma 5.12 ([3, p. 17]). Let q ≥ 3. There is a continuous function

σ : WB → (0, T0/2]

and a continuous map

Ψ1 : WB × I →WB,

such that

1. Ψ1( , 0) = idWB

2. Ψ1(h, λ) = h near ∂Dq
T0

3. Ψ1(h, 1) = h̃ = dt2 + f2dξ2 satisfies f (n)(σ(h)) = 0 for all n ≥ 1

4. 0 ≤ f ′ ≤ 1 and f ′′ ≤ 0 on [0, σ(h)].

Proof. This proof is all about choosing constants and having functions satisfying cer-

tain properties. Therefore, it is very technical. As we said, we will prove the existence

of certain functions afterwards (5.10 & 5.11), when it is clear what they are needed

for.

We write a metric h ∈WB as a pair (1, f) with f being a function on [0, T (h)]. We

then define the following continuous function:

ρ1(t) := min
0≤τ≤t

f ′(τ)

2f ′(0)
T (h) = min

0≤τ≤t

f ′(τ)

2
T (h).

This function is nonincreasing on [0, T (h)/2] and satisfies ρ1(0) = T (h)/2:

ρ1(0) =
f ′(0)

2f ′(0)︸ ︷︷ ︸
=1/2

T (h) =
T (h)

2
.

This means that there is a number t1 ∈ (0, T (h)/2], such that t1 = ρ1(t1) (intermediate

value theorem). Furthermore, there exists a number t2 > 0, such that 0 < f ′(t) < 1

and f ′′(t) < 0 for all 0 < t ≤ t2, because if it didn’t, the curvature formula (5.5)

would imply that there is some point t with κ < 0, which is a contradiction. Let

t∗ := min(t1, t2, T0/2). It follows that on (0, t∗] we have:

1 > f ′(t) > min
0≤τ≤t

f ′(τ) ≥ ρ1(t)
2

T (h)
> 0

0 > f ′′

and

f ′′(0) = 0 = f(0), f ′(0) = 1.

The last 2 equalities arise from (5.3) and from the fact that f and f ′′ are odd functions.

Remember that B is the lower bound for the scalar curvature of the disc. The following
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constants will be chosen in a way that in the end we can estimate the scalar curvature

of the metric (1, f). They are not of any special interest on their own:

B
′

:= max
[0, 9

10
t∗]

(q − 1)(q − 2)(1− f ′2)−Bf2

2(q − 1)ff ′′
< 1

B′ := max(
1

2
, B
′
) < 1

B′′ := min
[ 8
10
t∗, 9

10
t∗]

(q − 2

8

1− f ′2

ff ′
− f ′′

4f ′
− Bf

8(q − 1)f ′

)
> 0.

We take the function C(C1, t
∗) from (5.8) and choose C̃1, such that 1 − C(C̃1, t

∗) =√
1+B′

2 >
√
B′ ≥

√
B
′
.

C1 = min(C̃1, B
′′) > 0

t∗∗ = min

(
8

10
t∗,

√
(q − 1)(q − 2)

1−
(
1− C(C1, t∗)

)2
2B

)
> 0

C1,2 = min

(
q − 2

4

(
1−

(
1− C(C1, t

∗)
)2)− B

4(q − 1)
t∗∗2, 1

)
> 0.

Let’s check whether the above inequalities hold. Our main tool here is the curvature

formula (5.5):

(q − 1)(q − 2)
1− f ′2

f2
− 2(q − 1)

f ′′

f
> B

⇐⇒ (q − 1)(q − 2)
1− f ′2

f
−Bf > 2(q − 1)f ′′

f ′′<0⇐⇒
on (0,t∗]

(q − 1)(q − 2)(1− f ′2)−Bf2

2(q − 1)f ′′f
< 1

⇒ B
′
< 1,

(q − 1)(q − 2)
1− f ′2

f2
− 2(q − 1)

f ′′

f
> B

f>0⇐⇒
on (0,t∗]

q − 2

8

1− f ′2

f
− f ′′

4
>

Bf

8(q − 1)

⇐⇒ q − 2

8

1− f ′2

f
− f ′′

4
− Bf

8(q − 1)
> 0

f ′>0⇒ B′′ > 0.
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And finally,

q − 2

4

(
1−

(
1− C(C1, t

∗)
)2)− B

4(q − 1)
t∗∗2

≥ q − 2

4

(
1−

(
1− C(C1, t

∗)
)2)− B

4(q − 1)
(q − 1)(q − 2)

1−
(
1− C(C1, t

∗)
)2

2B

=
q − 2

4

(
1−

(
1− C(C1, t

∗)
)2)− q − 2

8

(
1−

(
1− C(C1, t

∗)
)2)

=
q − 2

8

(
1−

(
1− C(C1, t

∗)
)2)

> 0

⇒ C1,2 > 0.

We take the function α = α(C1,2, t
∗∗) from (5.10). Note that all these constants

(including the functions C,α) depend continuously on the metric h, which can be

easily verified by taking a converging sequence of metrics and checking the constants

for convergence.

We take the functions ψ̃λ,α : R→ R and ψλ : R→ R from (5.10 & 5.11). If we write

a warped metric h as h = (1, f), the desired deformation is given by:

Ψ̃1(h, λ) =


(

1, f
(
ψ̃2λ,α(t)

))
λ ∈ [0, 1

2 ](
1, f
(
ψ̃1,α(ψ2λ−1(t))

))
λ ∈ [1

2 , 1].
(5.13)

This is a continuous family of metrics on Rq. Using our family of diffeomorphisms

from (5.9), we can rescale Rq, so that we get a family of metrics on Dq
T0

:

Ψ1(h, λ) =



Φ∗9
10
t∗,t∗,T1(2λ)

(
1, f
(
ψ̃2λ,α(t)

))︸ ︷︷ ︸
metric on Dq

T̃1(λ)︸ ︷︷ ︸
metric on DqT0

λ ∈ [0, 1
2 ]

Φ∗9
10
t∗,t∗,T1(1)

Φ∗9
10
t∗,T1(1),T2((2λ−1),T1(1))

(
1, f
(
ψ̃1,α(ψ2λ−1(t))

))︸ ︷︷ ︸
metric on Dq

T̃2(2λ−1)︸ ︷︷ ︸
metric on DqT0

, λ ∈ [1
2 , 1]

(5.14)

where

T̃1(λ) = φ 9
10
t∗,t∗,T1(λ)(T0)

and

T̃2(λ) = T̃1(λ) = φ 9
10
t∗,T1(1),T2(λ,T1(1)) ◦ φ 9

10
t∗,t∗,T1(1)(T0).

From (5.10, 1 & 5.11, 1) we see that this really is a deformation of R(Dq
T0

) into

itself and by (5.10 & 5.11) this is continuous. Furthermore, it is constant near the

boundary, since the derivative of our family of diffeomorphisms is the identity there and

the functions ψ, ψ̃ end in straight lines with slope 1. On [0, 9
10 t
∗] the diffeomorphisms
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φ(... ) are all equal to id[0, 9
10
t∗] and thus the metrics have the form dt2 + f(ψ̃)2dξ2 or

dt2 + f(ψ̃ ◦ ψ)2dξ2 here.

We will abbreviate ψ̃λ,α and ψλ by ψ̃ and ψ. In this notation the dependence on

C1, t
∗, C1,2, t

∗∗, λ, α will be implied.

What remains to be done now is to verify that the scalar curvature is greater than B

during the deformation. These computations are performed for the metrics on Dq

T̃i(λ)
.

The scalar curvature of (1, f(ψ̃)) (see (5.5)) is given by:

κ = (q − 1)

(
(q − 2)

1−
(
d
dtf(ψ̃)

)2
f(ψ̃)2

− 2
d2

dt2
f(ψ̃)

f(ψ̃)

)

= (q − 1)

(
(q − 2)

1− f ′(ψ̃)2ψ̃′2

f(ψ̃)2
− 2

d
dt

(
f ′(ψ̃)ψ̃′

)
f(ψ̃)

)

= (q − 1)

(
(q − 2)

1− f ′(ψ̃)2ψ̃′2

f(ψ̃)2
− 2

f ′′(ψ̃)ψ̃′2

f(ψ̃)
− 2

f ′(ψ̃)ψ̃′′

f(ψ̃)

)
. (5.15)

Until ψ̃ reaches 8
10 t
∗, ψ̃′′ ≤ 0 holds (5.10, 3) and therefore −2f

′(ψ̃)ψ̃′′

f(ψ̃)
≥ 0.

κ = (q − 1)

(
(q − 2)

1− f ′(ψ̃)2ψ̃′2

f2(ψ̃)
− 2

f ′′(ψ̃)ψ̃′2

f(ψ̃)
− 2

f ′(ψ̃)ψ̃′′

f(ψ̃)

)
!
> B

⇐ (q − 1)

(
(q − 2)

1− f ′(ψ̃)2ψ̃′2

f(ψ̃)2
− 2

f ′′(ψ̃)ψ̃′2

f(ψ̃)

)
> B

⇐⇒ (q − 1)(q − 2)
1− f ′(ψ̃)2ψ̃′2

f(ψ̃)2
−B > 2(q − 1)

f ′′(ψ̃)ψ̃′2

f(ψ̃)

wlog, f ′′<0⇐⇒ (q − 1)(q − 2)(1− f ′(ψ̃)2ψ̃′2)−Bf(ψ̃)2

2(q − 1)f ′′(ψ̃)f(ψ̃)
< ψ̃′2.

Since ψ̃′2 ≥
(
1− C(C1, t

∗)
)2
> B

′
(5.10, 4), the above equation is true.

If ψ̃ ∈ [ 8
10 t
∗, 9

10 t
∗], ψ̃′′ might be positive. On this interval, we have to verify:

κ = (q − 1)

(
(q − 2)

1− f ′(ψ̃)2ψ̃′2

f(ψ̃)2
− 2

f ′′(ψ̃)ψ̃′2

f(ψ̃)
− 2

f ′(ψ̃)ψ̃′′

f(ψ̃)

)
!
> B

⇐⇒ (q − 1)

(
(q − 2)

1− f ′(ψ̃)2ψ̃′2

f(ψ̃)2
− 2

f ′′(ψ̃)ψ̃′2

f(ψ̃)

)
−B > 2(q − 1)

f ′(ψ̃)ψ̃′′

f(ψ̃)

⇐⇒ q − 2

2

1− f ′(ψ̃)2ψ̃′2

f(ψ̃)f ′(ψ̃)
− f ′′(ψ̃)ψ̃′2

f ′(ψ̃)
− Bf(ψ̃)

2(q − 1)f ′(ψ̃)
> ψ̃′′.
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Again, from (5.10, 4) we can conclude:

q − 2

2

1− f ′(ψ̃)2ψ̃′2

f(ψ̃)f ′(ψ̃)
− f ′′(ψ̃)ψ̃′2

f ′(ψ̃)
− Bf(ψ̃)

2(q − 1)f ′(ψ̃)

ψ̃′≤1
≥

f ′′<0, ψ̃′2≥ 1+B′
2

q − 2

2

1− f ′(ψ̃)2

f(ψ̃)f ′(ψ̃)
− f ′′(ψ̃)

f ′(ψ̃)

(
1 +B′

2

)
− Bf(ψ̃)

2(q − 1)f ′(ψ̃)

≥
B′≥B′

q − 2

2

1− f ′(ψ̃)2

f(ψ̃)f ′(ψ̃)
− f ′′(ψ̃)

2f ′(ψ̃)

−(q − 1)(q − 2)(1− f ′(ψ̃)2)−Bf(ψ̃)2

4(q − 1)f(ψ̃)f ′(ψ̃)
− Bf(ψ̃)

2(q − 1)f ′(ψ̃)

=
q − 2

4

1− f ′(ψ̃)2

f(ψ̃)f ′(ψ̃)
− f ′′(ψ̃)

2f ′(ψ̃)
− Bf(ψ̃)

4(q − 1)f ′(ψ̃)

> B′′ ≥ C1

(5.10, 5)

≥ ψ̃′′

Since ψ̃′ = 1 when ψ̃ ∈ [ 9
10 t
∗,∞) we get that

κ = (q − 1)

(
(q − 2)

1− f ′(ψ̃)2

=1︷︸︸︷
ψ̃′2

f2(ψ̃)
− 2

f ′′(ψ̃)

=1︷︸︸︷
ψ̃′2

f(ψ̃)
− 2

f ′(ψ̃)ψ̃′′

f(ψ̃)︸ ︷︷ ︸
=0

)

= (q − 1)

(
(q − 2)

1− f ′(ψ̃)2

f2(ψ̃)
− 2

f ′′(ψ̃)

f(ψ̃)

)
> B.

which is clear, as h ∈ WB. This concludes the curvature computation during the first

part of the deformation.

For the computations on the second part of the deformation we will write f̃ =

f(ψ̃) and ψ = ψλ. By (5.11, 3) we only need to estimate the scalar curvature when

ψ ∈ [ α10 , t
∗∗]. First we note that the inequality 0 < f̃ ′ ≤ C̃ = 1 − C(C1, t

∗) < 1 holds

here, because ψ̃′1,α = 1 − C(C1, t
∗) and f ′ ∈ (0, 1) on this interval (see (5.10, 6)). It

again suffices to show

q − 2

2

1− f̃ ′(ψ)2ψ′2

f̃(ψ)f̃ ′(ψ)
− f̃ ′′(ψ)ψ′2

f̃ ′(ψ)
− Bf̃(ψ)

2(q − 1)f̃ ′(ψ)
> ψ′′.
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So,

q − 2

2

1− f̃ ′(ψ)2ψ′2

f̃(ψ)f̃ ′(ψ)
− f̃ ′′(ψ)ψ′2

f̃ ′(ψ)
− Bf̃(ψ)

2(q − 1)f̃ ′(ψ)

f̃ ′(ψ)ψ′≤C̃
≥

f̃ ′′(ψ)ψ′2≤0

1

f̃ ′(ψ)

(q − 2

2

1− C̃2

f̃(ψ)
− Bf̃(ψ)

2(q − 1)

)
f̃ ′(ψ)≤1

≥
(q − 2)(1− C̃2)− B

(q−1) f̃(ψ)2

2f̃(ψ)

f̃(ψ(t))≤t
≥

f̃(ψ(t))≤t∗∗

(q − 2)(1− C̃2)− B
(q−1) t

∗∗2

2t

=
2

t

(
q − 2

4

(
1−

(
1− C(C1, t

∗)
)2)− B

4(q − 1)
t∗∗2

)

≥ 2
C1,2

t

(5.11, 4)
> ψ′′.

We now define σ(h) = α ∈ [0, t∗/2] (Recall that on this interval, Φ 9
10
t∗,t∗,T2(λ) is the

identity) and get that Ψ1(h, 1) = (1, f̃) satisfies 0 ≤ f̃ ′ ≤ 1, f̃ ′′ ≤ 0 on [0, σ] and

f̃ (n)(σ(h)) = 0 for all n ≥ 1,

which completes this proof.

Proof of lemma 5.10. We take the function θ0 from (5.8). The strategy here is to

construct a function θλ,α(t) and then to take ψ̃λ,α to be the solution of the second

order differential equation

ψ̃′′λ,α(t) = θλ,α(t)

ψ̃λ,α(0) = 0

ψ̃′λ,α(0) = 1.

Since we want to start with ψ̃′λ,α ≡ 1 (5.6, 7) the second derivative has to start

with an interval on which it is 0. When ψ̃λ,α ∈ [ α10 ,
8
10 t
∗] we want ψ̃λ,α to satisfy

ψ̃′λ,α = 1−λC(C1, t
∗), so we have to perform a downwards bend: ψ̃′′λ,α = − 1

αλC1θ0( tα−
1
20)t∗ on [ α20 ,

α
10 ]. Our next requirement is ψ̃′λ,α = 1, while ψ̃λ,α ∈ [ 9

10 t
∗,∞). Since

the slope we have is greater than 0, we deduce that there is a point tλ, depending

continuously on all our parameters, such that ψ̃λ,α(tλ) = 8
10 t
∗. From that point on,

we can perform an upwards bend λC1θ0( t−tλt∗ ) on [tλ, tλ + t∗

20 ]. Putting all these pieces

together, we get

θλ,α(t) =


− 1
αλC1θ0

(
t
α −

1
20

)
t∗ on [ α20 ,

α
10 ]

λC1θ0

(
t−tλ
t∗

)
on [tλ, tλ + t∗

20 ]

0 otherwise
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and we take ψ̃λ,α to be the solution of our second order differential equation

ψ̃′′λ,α(t) = θλ,α(t)

ψ̃λ,α(0) = 0

ψ̃′λ,α(0) = 1

and T1(λ) = ψ̃−1
λ,α(t∗). By (2.57) this is continuous in all our variables. The explicit

solution is

ψλ(t) = t+

∫ t

0

∫ s

0
θλ,α(r)drds.

All that is left to do is to verify the 7 conditions above:

1., 2., & 5. are obvious from our construction.

3. Here it suffices to show ψ̃λ,α(tλ +
t∗

20
) ≤ 9

10
t∗ :

ψ̃λ,α(tλ +
t∗

20
) = tλ +

t∗

20
+

∫ tλ+ t∗
20

0

∫ s

0
θλ,α(r)drds

= tλ +

∫ tλ

0

∫ s

0
θλ,α(r)drds︸ ︷︷ ︸

=ψ̃λ,α(tλ)= 8
10
t∗

+
t∗

20
+

∫ tλ+ t∗
20

tλ

∫ s

0
θλ,α(r)dr︸ ︷︷ ︸

≤λ·C(C1,t∗)≤1

ds

︸ ︷︷ ︸
≤ 9

10
t∗

≤ 9

10
t∗

4. ψ̃′λ,α(t) = 1 +

∫ t

0
− 1

α
λC1θ0

( s
α
− 1

20

)
t∗ds+

∫ t

0
λC1θ0

(s− tλ
t∗

)
ds

≥ 1 +

∫ α
10

α
20

− 1

α
λC1θ0

( s
α
− 1

20

)
t∗ds = 1− λC(C1, t

∗)

6. follows from the same computation.

7. follows from∫ α
10

α
20

2

α
λC1θ0

( s
α
− 1

20

)
t∗ds =

∫ tλ+ t∗
20

tλ

λC1θ0

(s− tλ
t∗

)
ds.

For the proof of (5.11) we need a little preparation.

Lemma 5.16 ([3, p. 15]). Let a < b ∈ R, c ∈ (0, 1) and f ≥ 0, f 6= 0 a continuous

function on [a, b]. Then there is a smooth cutoff function φ on [a, b], i.e. smooth,

increasing functions on R, such that φ(t) = 0 for t ≤ a and φ(t) = 1 for t ≥ b, such

that ∫ b

a
φ(t)f(t)dt = c

∫ b

a
f(t)dt.

φ depends continuously on a, b and c. The same holds for inverse cutoff functions, i.e.

for smooth, decreasing functions 1 ≥ φ ≥ 0, such that φ(t) = 1 for t ≤ a and φ(t) = 0

for t ≥ b.
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Proof. Let φ̃ be a fixed cutoff function on [0, 1]. Then φ̃
(
t−a
b−a
)

is a cutoff function on

[a, b] and so is φµ = φ̃
((

t−a
b−a
)µ)

for any µ ∈ (0,∞). We will show that we can choose

µ, so that the equation above is fulfilled and that our choice of µ is continuous in a, b

and c.

Consider the smooth, strictly decreasing function

H : (0,∞) → R

µ 7→
∫ b

a

(
φ
(( t− a

b− a

)µ)
− c
)
f(t)dt.

Then H(µ) < 0 for µ big enough and H(µ) > 0 for µ close enough to 0. By the inter-

mediate value theorem, there is a unique (remember that H is increasing) µ0 ∈ (0,∞),

such thatH(µ0)=0, which means we have found our cutoff function. Now let (an, bn, cn)

be a sequence converging to (a, b, c) and let µn, µ be the numbers constructed above

belonging to (an, bn, cn) and (a, b, c). Then the function

G : R3 → R

(a, b, c) 7→
∫ b

a

(
φ
(( t− a

b− a

)µ)
− c
)
f(t)dt.

is continuous, which means G(an, bn, cn) → G(a, b, c) = 0. Let ν ∈ [0,∞] be an

accumulation point of this sequence and let µnk be a subsequence converging to ν.

H(µn)−G(an, bn, cn) = H(µn)−H(µ) +G(a, b, c)︸ ︷︷ ︸
=0

−G(an, bn, cn)

= H(µn)−H(µ)︸ ︷︷ ︸
→0

+G(a, b, c)−G(an, bn, cn)︸ ︷︷ ︸
→0

→ 0

⇒ lim
n→∞

H(µn) = lim
n→∞

G(an, bn, cn).

So

H(ν) = lim
k→∞

H(µnk) = lim
k→∞

G(ank , bnk , cnk) = 0

and we get that H(ν) = 0 = H(µ). But since H is strictly increasing we deduce µ = ν

and therefore µn → µ.

The proof for inverse cutoff functions works in the same way.

Proof of Lemma 5.11. We again will construct ψλ as the solution of a differential equa-

tion.

ψ′′λ(t) = θλ(t)

with the initial conditions ψ′λ(0) = 1 and ψλ(0) = 0. What we have to do now, is

construct the function θλ.

We set

α :=
9

20
t∗∗e

− 1.1
C1,2

t0 := α exp(1.1/C1,2).
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Then we have

α =
9

20︸︷︷︸
<1/2

t∗∗ e
− 1.1
C1,2︸ ︷︷ ︸
<1

<
1

2
t∗∗

t0 = α exp(1.1/C1,2) =
9

20
t∗∗ e

− 1.1
C1,2 exp(1.1/C1,2)︸ ︷︷ ︸

=1

=
9

20
t∗∗ <

9

10
t∗∗

and ∫ t0

α

C1,2

t
dt = C1,2 ln

( t0
α

)
= C1,2 ln

(
exp
(
1.1/C1,2

))
= 1.1

Let α1 < t1 ∈ [α, t0] be the unique numbers, such that∫ α1

α

C1,2

t
dt = 0.1 =

∫ t1

t0

C1,2

t
dt.

Then
∫ t1
α1

C1,2

t dt = 0.9 and by (5.16) there are cutoff functions φ1, φ2 depending con-

tinuously on C1,2 and t∗∗, such that∫ α1

α
φ1(t)

C1,2

t
dt = 0.05 =

∫ t1

t0

φ2(t)
C1,2

t
dt.

Finally, we are able to define

θ̃1(t) =



φ1(t)
C1,2

t if t ∈ [α, α1]

C1,2

t if t ∈ [α1, t1]

φ2(t)
C1,2

t if t ∈ [t1, t0]

0 otherwise.

Note that
∫
θ̃1(t)dt = 1. Let 0 ≤ θ̃2(t) ≤ 1 be a smooth, nonnegative bump function

on [0, 1], such that
∫
θ̃2(t)dt = 1.

θ1(t) =


− 10

9α θ̃2

(
10t−α

9α

)
if t ∈ [ α10 , α]

θ̃1(t) if t ∈ [α, t0]

0 otherwise.

This is continuous in α,C1,2 and t∗∗ and of course smooth in t. θλ is then given by:

θλ = λ · θ1

and thus

ψλ(t) = t+

∫ t

0

∫ s

0
θλ(r)drds.

From (2.57) we know that this is continuous in λ, α,C1,2 and t∗∗. When ψλ reaches

T1 ≥ t∗∗/2 > α we see that ψ′λ > 0. Therefore it is injective here and it makes sense

to define T2(λ, T1) = ψ−1
λ (T1).
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What’s left to do, is to check the 6 requirements for this family of functions. 1, 2,

4 and 5 are obvious from our construction. The only things that remain to be shown

are requirements 3 and 6.

Let’s start with 3. ψ′λ(t) = 1 on [0, α/10] is clear. To show ψ′λ(t) = 1 when

ψλ ∈ [ 9
10 t
∗,∞) it is sufficient to show that ψλ(t0) ≤ 9

10 t
∗∗. Then for ψλ(t) ≥ 9

10 t
∗∗ ≥

ψλ(t0) we have t ≥ t0 and therefore

ψ′λ(t) = 1 +

∫ t

0
θλ(s)ds

= 1 + λ
(∫ α

α/10
− 10

9α
θ̃2

(10s− α
9α

)
ds︸ ︷︷ ︸

=−1

+

∫ t0

α
θ̃1(s)ds︸ ︷︷ ︸
=1

)
= 1.

Note that∫ s

α
θλ(r)dr = −

∫ α

s
θλ(r)dr ≤ λ

∫ α

0

10

9α
θ̃2

(10r − α
9α

)
dr = λ for s ≤ α∫ s

α
θλ(r)dr = λ

∫ s

α
θ̃1(r)dr ≤ λ

∫ t0

α
θ̃1(s)ds = λ for s ≥ α

From our construction we know:

ψλ(t0) = t0 +

∫ t0

0

∫ s

0
θλ(r)drds.

= t0 +

∫ t0

0

(∫ α

0
θλ(r)dr︸ ︷︷ ︸
=−λ

+

∫ s

α
θλ(r)dr

)
ds

= t0 − λt0 +

∫ t0

0

∫ s

α
θλ(r)drds

= t0 − λt0 +

∫ α

0

∫ s

α
θλ(r)dr︸ ︷︷ ︸
≤λ

ds

︸ ︷︷ ︸
≤λα

+

∫ t0

α

∫ s

α
θλ(r)drds

≤ t0 − λ(t0 − α) +

∫ t0

α

∫ s

α
θλ(r)dr︸ ︷︷ ︸
≤1

ds

︸ ︷︷ ︸
≤λ(t0−α)

≤ t0 − λ(t0 − α) + λ(t0 − α) = t0
see above
<

9

10
t∗∗.

Last but not least we consider 6:

ψ′1(α) = 1 +

∫ α

0
θ1(s)ds = 1 +

∫ α

0
− 10

9α
θ̃2

(10s− α
9α

)
ds︸ ︷︷ ︸

=−1

= 0,

ψ
(n)
1 (α) = θ̃

(n)
1 (α) =

(
φ1(α)

C1,2

α

)(n−2)

=

n−2∑
l=0

(
n− 2

l

)
φ

(l)
1 (α)︸ ︷︷ ︸
=0

(C1,2

α

)(n−2−l)
= 0,
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because φ1 is a smooth cutoff function. Thus, the function ψ1 and every derivative

vanish at α.

5.2.2 Deforming W into W loc

Remark 5.17. Our torpedo metric g0 of radius T0 is a warped metric in the disc.

Let’s assume that g0 ∈WB, i.e. T0 is so small that the scalar curvature of g0 is greater

than B. From now on we will write

g0 = dt2 + f̃0(t)2dξ2.

with warping function

f̃0(t) = T0 · sin
(π

2

t

T0︸︷︷︸
=θ

)
.

t

T0

θ

R = 2T0/π

Figure 5.4: Dq
T0

interpreted as the upper hemisphere of Sq(T0)

Note that in this case 0 ≤ f̃ ′0 ≤ 1, f̃ ′′0 ≤ 0 and f̃ ′′0 < 0 on (0, T0].

Definition 5.18. Let h ∈ WB. We call h a local torpedo metric if, for some number

c ∈ [0, T0], the metric h is a warped metric of the form

h =
(T0

c

)2
dt2 + f̃0

(T0

c
t
)2
dξ2

in the disc Dq
c . In other words, the metric h is the pullback of our fixed torpedo metric

g0 under the linear map φ = (T0/c) · idRq inside Dq
c , i.e. it is a torpedo metric on Dq

c

of radius T0. The set of all such metrics together with the subspace topology will be

denoted by W loc.
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Remark 5.19 ([3, p. 17]). The number c from the preceeding definition (5.18) can be

seen as a continuous function on W loc

c : W loc → (0, T0].

Proposition 5.20 ([3, p. 19]). Let q ≥ 3. Let h = (1, f) be a metric on Dq

T̃
(T̃ > T0

from equation 5.14), such that there is a point σ ∈ (0, T0/2) satisfying:

1. f (n)(σ) = 0 for all n ≥ 1

2. 0 ≤ f ′ ≤ 1 and f ′′ ≤ 0 on [0, σ].

Then there exists a family of metrics Ψ2(h, λ, σ) = (fλ, gλ) on the disc Dq
T0

, such that

1. Ψ(h, 0, σ) = h

2. Ψ(h, 1, σ) =
(
T0
σ

)2
dt2 + f̃0

(
T0
σ t
)2
dξ2 on Dq

σ

3. Ψ(h, λ, σ) = h near the boundary of Dq
T (h).

Ψ depends continuously on h, λ and σ.

Remark 5.21. Ψ1 has been defined as the pullback under some diffeomorphisms

Φt1,t2,t3. Before applying them, the metric has the form dt2 + f2dξ2. Therefore, the

metric we start the following proof with, will be the metric
(

1, f
(
ψ̃1,α(ψ1)

))
on Dq

T̃2(1)

which we will abbreviate by (1, f).

Proof of Proposition 5.20. In this proof we use of the collar we created:

collar

Figure 5.5: Deforming into W loc

We only construct a deformation on Dq
σ. We will then prolong the collar, i.e. we

will insert a cylinder of length a. This can be done because we created a collar. On

the cylinder we take the straight line homotopy to the metric ha = g(t/a) + dt2 from

(2.68). This is just the same as in the proof of (4.13).
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So let’s have a look at Dq
σ. The idea is to take a straight line

fλ = λf̃0 + (1− λ)f.

This usually doesn’t preserve positive scalar curvature, but since 0 ≤ f ′ ≤ 1 and f ′′ ≤ 0

as long as t ∈ [0, σ], we have

κ = (q − 1)
(

(q − 2)
1−

∈[0,1]︷ ︸︸ ︷
((1− λ)f + λf̃0)′

2

((1− λ)f + λf̃0)2
− 2

≤0︷ ︸︸ ︷
((1− λ)f + λf̃0)′′

(1− λ)f + λf̃0

)
> 0.

Let ν ∈ R. Since the scalar curvature of the metric νh = (ν, ν · f) is equal to

κ =
(q − 1)

(νf)2ν3

(
(q − 2)(ν3 − (νf ′)2ν)− 2ν2f ′′fν

)
=

(q − 1)

ν2

(
(q − 2)

1− f ′2

f2
− 2

f ′′

f

)
,

there is a ν ∈ (0, 1], such that ν · fλ has scalar curvature greater than B. So the first

part of our homotopy will be (1− λ+ λν)(1, f) =
(
(1− λ+ λν), (1− λ+ λν)f

)
. Next

we apply the above homotopy ν · fλ. Afterwards we need to rescale the metric:

gλ = 1− λ+ λ · T0

σ

fλ = f̃0

(
(1− λ+ λ · T0

σ
)t
)
.

If we abbreviate aλ := 1−λ+λ · T0σ , we can use formulae (5.7) and (5.15) to compute:

κ =
(q − 1)

f2
λg

3
λ

(
(q − 2)(g3

λ − f ′2λ gλ)− 2f ′′λfλgλ

)

= (q − 1)
(

(q − 2)
1− f ′2λ

g2λ

f2
λ

− 2
f ′′λ
g2
λfλ

)

= (q − 1)
(

(q − 2)
1− f ′20 ·a2λ

a2λ

f2
0

− 2
f ′′0 · a2

λ

a2
λf0

)
= (q − 1)

(
(q − 2)

1− f ′20
f2

0

− 2
f ′′0
f0

)
> B.

Putting everything together, we arrive at:

Ψ2

(
(1, f), λ

)
=



(1− 4λ+ 4λν) ·
(
1, f
)

if λ ∈ [0, 1/4]

ν ·
(

1, (4λ− 1)f̃0 + (2− 4λ)f)
)

if λ ∈ [1/4, 2/4]

ν ·
(

(3− 4λ) + (4λ− 2) · T0σ ),

f̃0

(
(3− 4λ+ (4λ− 2) · T0σ )t

))
if λ ∈ [2/4, 3/4](

(4− 4λ)ν + (4λ− 3)
)
·
(
T0
σ , f

(
T0
σ · t

))
if λ ∈ [3/4, 1].
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For λ = 1 we arrive at Ψ2(h, 1) =
(
T0
σ

)2
dt2 + f̃0

(
T0
σ

)2
dξ2, i.e. Ψ2(h, 1) ∈W loc.

Outside of the cylinder we inserted, we didn’t change the metric, so the metric

remained unchanged near the boundary.

Corollary 5.22. Let q ≥ 3. There is a map

Ψ: WB × I →WB,

such that

1. Ψ(., 0) = id

2. Ψ(h, 1) ∈W loc
B

3. Ψ(h, t) = h near the boundary of Dq
T0

.

Proof. This is accomplished by inserting the deformation above (5.20) before applying

the rescaling diffeomorphisms in (5.14).

We finish this chapter with two little preparations which will be needed when we

prove the main theorems.

Proposition 5.23 ([3, p. 20]). Let q ≥ 3 and let Dq
[t1,t2] be the annulus {x ∈

Dq
T0

: ‖x‖ ∈ [t1, t2]} and let h be a warped metric on this annulus, i.e. h = g2dt2 +

f2dξ2. Let B > 0 be a strict lower bound for the scalar curvature of h and suppose

that for some ε > 0 we have g = 1, f = r0 on [t1, t1 + ε]∪ [t2− ε, t2]. Then there exists

a continuous family of warped metrics hλ, such that

1. h0 = h

2. h1 = dt2 + r2
0dξ

2

3. there exists a δ > 0, such that hλ = h on [t1, t1 + δ] ∪ [t2 − δ, t2]

4. κλ ≥ B.

Proof. We take fλ := (1 − λ)f + λr0. Then (1, fλ) maybe won’t have positive scalar

curvature, but since the metric (C, fλ) has scalar curvature

κ = (q − 1)

(
(q − 2)

1− f ′2λ
C2

f2
λ

− 2
f ′′λ
C2fλ

)
,

there is a C ≥ 1, such that κ > 0. The following approach is similar to the one from

the proof of the preceding lemma (5.20). We first choose δ = ε/2.

Since fλ is constant on the annuli [t1 + δ, t1 + ε] and [t2 − ε, t2 − δ], we don’t have

to enlarge them. Then we increase g(t), so that we may assume that g ≡ C̃ =

max
(
C,maxt∈[t1,t2] g(t)

)
and go through the deformation fλ defined above on [t1+ε, t2−
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t1 t1+δ t1+ε t2t2-δ t2-ε

Figure 5.6: [t1, t2]

ε]. At t ∈ [t1+δ = tδ, tε = t1+ε] we take the metric gλ = (1−λ
(
t−tδ
tε−tδ

)
)+λ

(
t−tδ
tε−tδ

)
C̃ ≥ 1.

This satisfies:

gλ(tδ) = 1

gλ(tε) = 1− λ+ λC̃

and has scalar curvature greater B. fλ is constant on [tδ, tε]. We use the same approach

on [t2 − ε, t2 − δ].
Last we bring C̃ down again. During the entire process, we didn’t change the metric

near the boundary and the scalar curvature was greater then 0. If we increase C

even more, we can even achieve that κλ > B. It remains to verify property 2. On

[t1 +ε, t2−ε] and on [t1, t1 +δ]∪ [t2−δ, t2] this is clear. On [t1 +δ, t1 +ε]∪ [t2−ε, t2−δ]
it follows from the fact that fλ is constant here.

Proposition 5.24. Let Φ: Dq
T → Dq

T be a radial diffeomorphism, i.e. Φ(v) = φ(‖v‖)
‖v‖ v

for some diffeomorphism φ : [0, T ]→ [0, T ] with φ(0) = 0. Then, the map

Φ∗ : WB →WB

is well defined.

Proof. It is clear that the scalar curvature of Φ∗h is the same as the scalar curvature

of h. It only remains to show, Φ∗h is a warped metric. But this follows immediatly

from the computation below (5.1), if we take G−1(t) = φ and ϕ = Φ:

Let X,Y be tangent vectors at a point t, s ∈ [0, T ]×Sq−1 and let h = g2dt2+f2dξ2 ∈
WB. Then

Φ∗h(X,Y ) = h ◦ (D(t,s)Φ(X), D(t,s)Φ(Y )).

If X is a vector in the dξ-direction, D(t,s)Φ(X) = X, since Φ is radial. If X is in the

dt-direction

D(t,s)Φ(X) =
d

dx
|x=0φ

(
(t+ x)X

)
= φ′(t) ·X.
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So we can conclude our computation with

Φ∗h(X,Y ) =


g(φ(t))2 · dt2

(
φ′(t) ·X,φ′ · Y

)
if X,Y are in dt-direction

f(φ(t))2 · dξ2
(
X,Y

)
if X,Y are in dξ-direction

0 else

= g(φ(t))2 · (φ′)2︸ ︷︷ ︸
=:g̃2

·dt2 + f(φ(t))2︸ ︷︷ ︸
=:f̃2

dξ2.



6 Surgery invariance of the homotopy type

of R+(M)

This chapter contains the results from [3, pp. 20-22].

Let Np ⊂Mn be a closed submanifold with trivial normal bundle. Let gN be a fixed

metric on N and let

B = max
(
−min
x∈N

(κgN (x)), 0
)
.

Let τ : Np ×Dq
T0
↪→ Mn a fixed tubular neighbourhood of N ⊂ M . Let g0 be a fixed

torpedo metric of radius T0, where T0 is small enough so that g0 ∈ WB. Furthermore

let

W (N, τ) = {g ∈ R+(M) : τ∗(g) = gN + gw, gw ∈WB}.

The subspace W loc(N, τ) ⊂W (N, τ) shall be defined analogously to (5.18).

Proposition 6.1 ([3, p. 21]). Let (gs)s∈S be a compact family of metrics. If gs ∈
W (N, τ), then GLC(t, s) ∈W (N, τ) for all t ∈ [0, 1].

Proof. In order to proof this, we need to take a closer look at the construction of

the GLC-map (4.16). First we note that we can choose GLC to take place inside of

an arbitrarily small tubular neighbourhood of N , so we may assume that the entire

deformation takes place inside a small neighbourhood of τ(N ×Dq
T0

)

The first part of this deformation is to push out a cylinder:

f∗α1(λ),s(gs + dt∗).

Since fγ,s : M ↪→ M × R was defined by fγ,s = exp⊥Tγ(gs)
◦dp−1

γ,gs ◦ φ
−1 ◦ (exp⊥gs)

−1,

we know that fγ,s|N is a diffeomorphism onto Nγ = fγ,s(N). Therefore, f∗γ,s doesn’t

change the metric on N and

τ∗f∗γ,s(gs + dt2) = gN + gDqT0

for some metric gDqT0
on the disc. Now let’s have a look at what happens to the metric

on Dq
T0

. The map dp−1
γ,gs ◦ φ

−1 only acts by stretching of the normal bundle by some

radial diffeomorphism which preserves the property of being a warped metric (5.24).

Since everything that could happen while applying (exp⊥gs)
−1 is reversed by exp⊥Tγ(gs)

,

we know that during this first deformation warped metrics remain warped.

The second part of a GLC-deformation consists of taking a straight path on the

cylinder to the metric gN+g0 on top of the cylinder. This again means, the deformation

79
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is constant on the N -factor. So again, we have

τ∗f∗α1(1),s

(
α2(λ, s)

)
= gN + g̃DqT0

.

As g0 is a warped metric, we can write g0 = g2
1dt

2 + f2
1dξ

2. By

t(g2
1dt

2 + f2
1dξ

2) + (1− t)(g2
2dt

2 + f2
2dξ

2)

= (tg2
1 + (1− t)g2

2)︸ ︷︷ ︸
=g̃2

dt2 + (tf2
1 + (1− t)f2

2 )︸ ︷︷ ︸
=f̃2

dξ2

g̃ =
√
tg2

1 + (1− t)g2
2

f̃ =
√
tf2

1 + (1− t)f2
2

we conclude that the space of warped metrics in the disc is convex. So we deduce

that g̃DqT0
from above remains a warped metric during the second part of a GLC-

deformation.

The third part of the deformation purely consists of taking the pullback under radial

diffeomorphisms. By (5.24) it is clear that this maps W (N, τ) into itself.

Theorem 6.2. Let q ≥ 3. Then the subspace R+
0 (M) is a weak deformation retract

of W (N, τ).

Proof. Without loss of generality we may assume that τ is defined on N × Dq
T1

for

some T1 > T0.

We fix a continuous family of radial diffeomorphisms (Φλ,T )λ∈I,T∈(0,T0] of Dq
T1

, such

that:

1. Φ0,T = id

2. Φ1,T acts on Dq
T0

by multiplication by T/T0

3. If T ∗ ∈ [T0, T1] is such that Φλ,T (Dq
T ∗) = Dq

T0
, then Φλ,T is a radial isometry on

a neighbourhood of ∂Dq
T ∗ = Sq−1(T ∗).

We define the retraction map as

r : W (N, τ)
Ψ( ,1)→
(5.22)

W loc(N, τ)
Φ→ R+

0 (M),

where Φ(h) = Φ∗1,c(h)h, where c(h) is the map from (5.19) and Ψ is the map that was

constructed in chapter 5 (5.22). What we need to show is that for r and ι : R+
0 (M) ↪→

W (N, τ), the compositions r ◦ ι and ι ◦ r are homotopic to the identity.

Let’s consider ι ◦ r first. The homotopy here is given by

D(h, λ) =

Ψ(h, 2λ) if λ ∈ [0, 1/2]

Φ∗(2λ−1),c(h′)h
′ if λ ∈ [1/2, 1], (h′ = Ψ(h, 1)).
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It is clear that

D(h, 0) = h

D(h, 1) = Φ∗1,c(Ψ(h,1))Ψ(h, 1) = r(h).

Now we have to look at r ◦ ι. For any metric h we know from chapter (5.2) that

c(Ψ(h, 1)) = T ≤ T0/2. Let h be a metric from R+
0 (M). Because of our construction

of Ψ (the whole construction from chapter 5.2 took place inside of Dn
T0/2

) we know

that Ψ(h, 1) = h on T0/2 ≤ ‖x‖ ≤ T1.

T1

T

T0/2

T0

T1

T0

pullback of a torpedo 
metric of radius T0

metric remains
unchanged during Ψ

Before applying Φλ,c(h')
*: After applying

torpedo metric of radius T0

T*

Pullback
metric
under Φ

Φλ,c(h')
*:

Φλ,c(h')
*

Φλ,c(h')
*

Figure 6.1: Rescaling Dq
T1

So there is a number T ∗ > T0 satisfying Φ1,c(h′)(D
q
T ∗) = Dq

T0
. This means that

on T ∗ ≤ ‖x‖ ≤ T1, r(h) is exactly the pullback of h restricted to T0 ≤ ‖x‖ ≤ T1

under the diffeomorphism Φ1,c(h′). On T0 ≤ ‖x‖ ≤ T ∗ it is a warped metric hw, which

satisfies hw|Sq−1(T0) = hw|Sq−1(T ∗), since Φλ,c(h′) was chosen to be a radial isometry

on a neighbourhood of Sq−1(T ∗). Without loss of generality we may assume that

hw = dt2 + r0dξ
2 on a neighbourhood of the boundary and by (5.23) we may assume

that hw = dt2 + r0dξ
2 on the entire annulus T0 ≤ ‖x‖ ≤ T ∗. The desired deformation

then consists of contracting the annulus T0 ≤ ‖x‖ ≤ T ∗ to Sq−1(T0) and at the same

time stretching T ∗ ≤ ‖x‖ ≤ T1 to T0 ≤ ‖x‖ ≤ T1. This will be done by going backwards

through the above family of diffeomorphisms Φλ,c(h′), i.e. by taking the deformation

Φ1−λ,c(h′). We then receive the metric h, we initially started with, which completes

the proof of this theorem.

Theorem 6.3. Let q ≥ 3. The inclusion map

ι : R+
0 (M)→ R+(M)
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is a homotopy equivalence.

Proof. We already know that R+
0 (M) is a deformation retract of W (τ,N). Since

all of these spaces are dominated by CW-complexes [12, p. 4], we conclude from

Whitehead’s theorem [16, p. 215] that it is sufficient to show, that the inclusion

ι : W (N, τ) ↪→ R+(M) is a weak equivalence. So it suffices to check that ι is a bijection

on π0 and that πr
(
R+(M),W (N, τ)

)
= 0 for all r ≥ 1.

We first verify that ι is a bijection on π0. Let h1, h2 ∈W (N, τ) be two metrics that

lie in the same path component of R+(M). Thus, there is a path α from h1 to h2.

Now we need to show that there is a path in W (N, τ) from h1 to h2. Let

GLC : D1 × I → R+(M)

be a Gromov-Lawson-Chernysh-deformation for the family α(s) of metrics, i.e a

homotopy satisfying GLC(s, 0) = α(s) and GLC(s, 1) ∈ R+
0 (M) ⊂ W (N, τ) for all

s ∈ D1. Then

α̃(t) =


GLC(0, 3t) if t ∈ [0, 1/3]

GLC(3t− 1, 1) if t ∈ [1/3, 2/3]

GLC(1, 3− 3t) if t ∈ [2/3, 1]

is our required path.

Now let [α] ∈ πr
(
R+(M),W (N, τ)

)
, where α : (Dr, Sr−1) →

(
R+(M),W (N, τ)

)
is

a continuous map. Let GLC be a deformation for the family α(s) of metrics. Then

GLC : Dr × I → R+(M)

is a deformation, such that GLC(s, 1) ∈ R+
0 (M) ⊂ W (N, τ) and GLC(Sr−1, t) ∈

W (N, τ) for all t ∈ I. This implies [α] = 0.

Theorem 6.4. Let M1 and M2 be two manifolds, such that M2 is obtained from M1

by surgery in dimension of at least 2 and in codimension of at least 3. Then there is

a homotopy equivalence between R+(M) and R+(M1).

Proof. Let p ≥ 2, q ≥ 3 and let τ : Sp ×Dq ↪→ Mn
1 be the embedding of the surgery

sphere with trivial normal bundle. Furthermore let

M0 := M1\τ(Sp ×Dq)

M1 = M0 ∪
Sp×Sq−1

(Sp ×Dq)

M2 = M0 ∪
Sk×Sq−1

(Dp+1 × Sq−1).

We now choose torpedometrics on Dq and on Dp+1 of the same radius. In this case

the metrics on Sp×Dq and on Dp+1×Sq−1 agree on Sp×Sq−1. Their restriction shall

be denoted by h. Finally we get

R+(M1) ' R+
0 (M1)

' {g ∈ R+(M0) : g = h on Sp × Sq−1}

' R+
0 (M2) ' R+(M2).
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Note that we need q ≥ 3 for the first equivalence and p + 1 ≥ 3 for the last one, i.e.

the surgery has to take place in dimension of at least 2 and in codimension of at least

3. This completes the proof of the main theorem.
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