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Abstract

In this thesis we study the action of the §-mapping class group of a high-dimensional manifold
M on the space R™ (M) of metrics of positive scalar curvature on M via pullback.

We show that this action factors through the bordism group QY of closed §-manifolds via
the mapping torus construction. We then give examples of diffeomorphisms that have null-
bordant mapping tori implying that the induced pullback map f* is homotopic to the identity.
Furthermore we show that some old detection results descend from R* (M) to the observer
moduli space.

Afterwards we construct a family of H-space structures on Rt (M) for certain M. We show
that all of these are isomorphic and use this to derive a criterion for the action map to be trivial
up to homotopy. We also give a criterion for the action to be nontrivial leading to a complete
classification of the action on simply connected Spin-7-manifolds.

In the last chapter we sketch how one can possibly generalize the recent result about the

homotopy groups of R* (M) from [BERW17] to a certain class of curvature conditions that

imply positive scalar curvature.

Zusammenfassung

In dieser Arbeit untersuchen wir die Wirkung der 6-Abbildungsklassengruppe einer
hochdimensionalen Mannigfaltigkeit M/ auf dem Raum R*(M) der Metriken positiver
Skalarkriimmung auf M via Riicktransport.

Wir zeigen, dass diese Wirkung iiber die Abbildungstoruskonstruktion durch die Kobordis-
musgruppe Y von geschlossenen §-Mannigfaltigkeiten faktorisiert. Anschlieffend geben wir
Beispiele von Diffeomorphismen, deren Abbildungstori nullbordant sind, was impliziert, dass
die induzierte Abbildung f* homotop zur Identitét ist. Des Weiteren zeigen wir, dass einige
alte Detektierungsresultate von Rt (M) auch fiir den Beobachtermodulraum erhalten bleiben.
AuBlerdem konstruieren wir eine Familie von H-Raumstrukturen auf Rt (M) fiir gewisse
M. Wir zeigen, dass all diese isomorph sind, und entwickeln hiermit ein Kriterium dafiir,
dass die Wirkung bis auf Homotopie trivial ist. Zudem geben wir ein Kriterium fiir Nicht-
Trivialitdt der Wirkung an, was uns erlaubt die Wirkung auf einfach zusammenhédngenden
Spin-7-Mannigfaltigkeiten komplett zu klassifizieren.

Im letzten Kapitel skizzieren wir, wie es moglich sein sollte, ein Resultat aus [BERW17] {iber

die Homotopiegruppen von R (M) auf eine gewisse Klasse von Kriimmungsbedingungen,

die positive Skalarkriimmung implizieren, zu verallgemeinern.
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Introduction

At first sight, the fields of differential geometry and algebraic topology seem substan-
tially different. The former comprises the study of Riemannian metrics, which are
fibrewise scalar products on the tangent bundle of a smooth manifold. These metrics
are rather sensitive to changes to the manifold. Algebraic topology on the other hand
measures coarse properties of a space which are homotopy-, homeomorphism- or
diffeomorphism-invariant. However, there is a deep connection between topology and

scalar curvature geometry.

The first glimpse of this connection was the discovery of the Lichnerowicz-formula
(cf. [Lic63]), relating the difference of the square of the Dirac-operator and the Laplace-

Beltrami-operator on spinors to the scalar curvature:

p? _yry = Sl
4
In particular, since V*V is a positive operator, positivity of the scalar curvature forces
the Dirac-operator to be positive. It therefore is invertible making its index vanish
if M is closed. In the same year the Atiyah-Singer-index-theorem was proven (cf.
[AS63]), providing the possibility to compute the index of the Dirac-operator in terms
of topological invariants. To be precise, the index of D is equal to the A-genus of M.
This means that there is an obstruction to the existence of a positive scalar curvature

metric (hereafter: psc-metric) expressed in purely topological terms.

Another connection was discovered independently in the late 1970’s by Gromov—
Lawson [GL80] and Schoen—-Yau [SY79]. They showed that the existence question for a

metric of positive scalar curvature is invariant under high-codimension surgeries:



Surgery Theorem ([GL80, Theorem A], [SY79, Corollary 4]). Let Mg, M; be smooth
manifolds. Let M, admit a psc-metric and let M be obtained from M, by a sequence

of surgeries of codimension at least 3. Then M, also admits a psc-metric.

If we assume that dim M; = d — 1 > 5, we know that M is obtained from M, by
surgeries in the appropriate dimensions if and only if there exists a manifold W of
dimension d such that OW = M, II M; and M; — W is 2-connected. The discovery of
the surgery theorem dramatically increased the number of manifolds known to admit

a psc-metric.

Using tangential structures, it is possible to get rid of the condition on the cobordism:
Let 0: B — BO(d) be a fibration. A §-structure on a manifold M is a lift of its Gauss-
map along 6. If My, M; and W admit §-structures and the map M; — B is 2-connected,
one can perform surgery on the interior of 1 to obtain a cobordism W': My ~ M,
where the inclusion M; < W’ is 2-connected, hence the surgery theorem applies. Thus
the existence question for psc-metrics can be answered by giving generators of the

appropriate cobordism groups that admit metrics of positive scalar curvature.

Examples of tangential structures arise as [-connected covers of BO(d), which are
BSO(d), BSpin(d), etc. For example, if M is simply connected and non-spinnable,
the map M; — BSO(d) is 2-connected and if M; is simply connected and Spin,
the map M; — BSpin(d) is 2-connected. In order to show that a simply connected
manifold M; admits a psc-metric, it therefore suffices to find a psc-manifold M,
orientedly cobordant (or Spin-cobordant, respectively) to M;. For simply connected,
non-spinnable manifolds this has been accomplished by Gromov-Lawson who showed
that every such manifold of dimension at least 5 admits a psc-metric. Later, Stephan
Stolz [St092] solved the Spin-case: He was able to determine that the index of the
Dirac-operator mentioned above is the only obstruction to the existence of a psc-metric
on simply connected Spin-manifolds of dimension at least 5. The (stable) Gromov-
Lawson—Rosenberg conjecture predicts that a similar statement also holds in the
non-simply connected case. There is a counterexample to the unstable conjecture (cf.
[Sch98]). The stable conjecture follows from the Baum-Connes conjecture and hence is

confirmed for many groups but in general it is still open.

The interest of topologists in positive scalar curvature also goes into another direction:
A lot of effort has been put into understanding the homotopy type of the space of all
psc-metrics R (M). This all started when Hitchin [Hit74] used index-theory to show
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that the zeroth and first homotopy group of this space contain nontrivial elements for
the standard sphere S%~!. These elements are spotted as follows: For a diffeomorphism
f of M and a Riemannian metric g, there exists the pullback metric f*g on M. If g
has positive scalar curvature, so does f*g and one gets an action of the group of
diffeomorphisms Diff (M) on R*(M). Fixing a base point gy € R (M), we get the
orbit map Diff(M) — RT(M), f — f*go. Hitchin constructed a homomorphism
m(RY(M)) — KO~ +1=(d=D(pt), where d — 1 is the dimension of M, and showed
that the composition 7 (Diff(M)) — 7x(RY(M)) — KO~ %=4(pt) is nontrivial for
k = 0,1and M = S9! provided that k + d = 1,2(8). In other words, nontrivial
elements of 7, (R (M)) are given by nontrivial elements in 7 (Diff (A/)) that are not
in the kernel of the orbit map. Over the years, there have been many other detection
results, for example by Gromov-Lawson [GL83], Carr [Car88], Botvinnik—-Hanke-
Schick-Walsh [BHSW10], Crowley—Schick [CS13], Hanke-Schick-Steimle [HSS14],
Crowley—Schick-Steimle [CSS16], Botvinnik—Ebert-Randal-Williams [BERW17] and
Ebert-Randal-Williams [ERW17a].

In this thesis we study the homotopy class of the map Diff(M) — hAut(R*(M))
associated to the action mentioned above. Here, hAut denotes the group-like H-space
of self-homotopy-equivalences. The main geometric tool we use is a generalization
of the surgery theorem due to Chernysh (cf. [Che04b], see also [Wal13]). Let M?~!
be a closed manifold and let ¢: S¥~! x D4=% < M be a surgery datum in M, i.e.an
embedding. We denote by M, the manifold obtained by performing surgery on M
along ¢.

Parametrized Surgery Theorem ([Che(04b, Theorem 1.1], [Wal13, Main Theorem]). If
d—k > 3, there is a zig-zag of maps R* (M) <— ... — R*(M,,), where the arrow pointing

towards R (M) is a weak equivalence.

Note that R (M) is homotopy equivalent to a CTW-complex and hence we can invert
all weak equivalences by Whitehead’s theorem. So we obtain a well-defined homotopy

class of amap S,: RT(M) — RT(M.,). This is called the surgery map.

In order to state our main result, we need to introduce some terminology. For precise
definitions see Chapter 1. For a once-stable! tangential structure §: B — BO(d), we
define Q9 (Mo, M) to be the set of equivalence classes of triples [W, fy, f1], where W is
a d-dimensional f-cobordism with boundary OW = gyW L1 1 W and f;: ;W =, M;

! A tangential structure is called once stable if it is a homotopy pullback of a fibration B — BO(d + 1)
(cf. Section 1.1).
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are f-diffeomorphisms. The equivalence relation is given by the cobordism relation.
This gives rise to the groupoid wa: The objects are given by (d — 1)-dimensional
f-manifolds and the morphism set morg, (Mo, M) is defined to be QY (Mo, M) if
the structure map M; — B is 2-connected and empty otherwise. Furthermore, let
hTop denote the homotopy category of spaces. The main theorem of this thesis is the

following.

Theorem A (Theorem 3.3.1). Let d > 7. Then there is a unique® functor S: ng — hTop
such that

1. S(M) =R (M),
2. S(M x 1,id, f~1) = [g =~ f*g],
3. S(trp,id,id) = S,, for tr ¢ the trace of a surgery datum p: S¥=1 x DI~k — M with

Remark. The definition of the map S goes back to Walsh (cf. [Wal11] and [Wal14]): He shows
that a psc metric gy on My can be extended to a metric G on a cobordism W : My ~» M,
provided that (W, M) is 2-connected. He shows that this construction gives a well defined
map mo(R*T(Mo)) — mo(RY(M1)) (cf. [Wall4, Theorem 1.3]). The improvement given by
Theorem A lies in the following two things: First, instead of a map on mo we get a homotopy

class of an actual map of spaces and second we show that the map S is also cobordism-invariant.

In order to state the most immediate consequence of Theorem A we need some notation.
We roughly define the structured mapping class group T (M) to be the components of
the groupoid of #-diffeomorphisms of M (see Section 1.2 for the precise definition)
and let QY = QY(0,0). There is a group homomorphism I'’(M) — Qf mapping the
homotopy class of a diffeomorphism [f] to its mapping torus denoted by [T7%].

Corollary B (Corollary 4.1.1). Let d > 7 and let 6: B — BO(d) be the stabilized tangential
2-type of M. Then there is a group homomorphism SE: QY — mo(hAut(R*(M))) such

that the following diagram commutes:

(M) mo(hAut(R*(M)))
[f] — —[g = [ Séw
\ QZ /
[Ty} W]

2Up to natural isomorphism.
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In particular, a 0-diffeomorphism f of M acts trivially on R (M) if its mapping torus is

nullbordant.

Let us now give an outline of this thesis.

Chapter 1 provides the necessary background material. We first introduce the notion
of tangential structures and give a few important examples in Section 1.1. Afterwards,
we define the structured mapping class group and we give two models for it. We also
compare it to the mapping class group of orientation preserving diffeomorphisms.
Section 1.3 is concerned with cobordism theory. We introduce the cobordism set
QZ(MO, M) of §-manifolds with fixed boundary #-diffeomorphic to My II M;. We
proceed by showing that this has a free and transitive action from the (structured)
cobordism group QY = Q9(0, () of closed manifolds. This implies for example that
the mapping torus construction gives a homomorphism I''(M) — QY. In the next
two Sections (1.4 and 1.5) we discuss handle decompositions of manifolds. In order
to compare two of those we first give a recollection on parametrized Morse theory
in Section 1.4. We continue by constructing a handle decomposition from a Morse
function and we analyze how it changes if one picks a different Morse function. In
Section 1.7 we introduce the main object of interest: the space R (M) of psc-metrics on
a manifold M. We explain its topology and we state the general version of Chernysh’s

Parametrized Surgery Theorem along with a few applications.

In the subsequent two chapters we will prove the main theorem. The construction
of S and the proof that S is well-defined has essentially two steps: First we have to
carefully decompose a cobordism into elementary ones, explain how these correspond
to surgery data and how two different decompositions are related. This does not
involve psc-metrics and we find it best to separate this “cobordism-direction” from the
“psc-direction”. Having the decomposition at hand we can turn to step two and use
the Parametrized Surgery Theorem to define the map S. We now have to study the

behavior of S on psc-metrics and how different decompositions affect the map S.

In Chapter 2 we start moving in the cobordism-direction. After recalling the defini-
tion of the unstructured cobordism category Cobg, we give a slightly different model
for my(Coby) denoted by Bordg: It has the same objects and a morphism is given
by a triple (W, fo, f1) consisting of a d-manifold W with decomposable boundary
OW = oW LI 4 W and diffeomorphisms f;: O;W =, M;. Two morphisms (W, fo, f1)
and (W', f{, f1) are identified if there exists a diffeomorphism F': W =5 W that is
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compatible with the given diffeomorphisms f; and f/. We proceed to give a presenta-
tion of Bord, in terms of generators and relations. This leads to the notion of the surgery
datum category Xy: The objects of this category are given by objg,, 4, and morphisms
are generated as (possibly empty) strings of composable elementary morphisms of the

following form:

1. For a surgery datum ¢: S*¥~1 x D4=% — M, let S,: M — M, be a morphism.
2. For diffeomorphism f: M = M let I #: M — M’ be a morphism.

For the relations among these generators see Proposition 1.5.7. We then define wide
subcategories Bord}" and X¢"" for a,b € NU {—1} by requiring the following: For an

element (W, fo, f1) € mor My, My) the map f;': My < W is a-connected and

lﬁ‘v’ordz’b (

fit: My = W is b-connected and for S, € mor .., (Mo, M) we require that for S,
d

the surgery datum ¢ has index k € {a + 1,...d — b — 1}. Using the 2-index theorem of

Hatcher-Igusa (cf. [Hat75] and [Igu88]) we derive the following result.

Theorem C (Theorem 2.3.3). For d > 7 there is an equivalence of categories
P12 X Bord, "

which is the identity on objects and is given on morphisms by the following:

1. For f: My — M, Iy is mapped to (Mg x [0,1],id, f) = (M; x [0,1], f~1,id)
2. For a surgery datum ¢ in M, S, is mapped to (tr (y),id, id).

Having this result at hand we are able to turn towards the psc-direction: In the following

Chapter 3 we define and analyze the surgery map

S: mor (Mg, M) — [RT(Mo), RT(M)].

—1,2
Bord 4

It is given by using the presentation from the previous chapter: The morphism I
is mapped to f. and for ¢: S¥~1 x D% — M, with d — k > 3, the morphism S,,
is mapped to the surgery map S,,: RT (M) — R*(M,). We proceed by showing
that this map is well-defined, i. e. that it respects the relations of X;. We get a well
defined homotopy class of a map Sy € [RT(My), R"(M;)] depending only on the
diffeomorphism class of W relative to the boundary. Afterwards we show that Sy
is invariant under surgeries in the interior of W assuming that these surgeries have

the right dimensions and codimensions. Using the fact that the cobordism relation is



generated by surgeries this yields the cobordism invariance of the surgery map and

thus we have proven Theorem A.

In Chapter 4 we give several applications of Theorem A and Corollary B. The first
one follows immediately from the fact thatQSP™ = 0 = QSO: Let Diff* (M) denote the

group of orientation preserving diffeomorphisms of M.

Corollary D (Corollary 4.1.3). Let M® be a simply connected manifold. Then the action of
Diff (M) on R* (M) is homotopy-trivial, i. e. for every orientation preserving diffeomorphism
f of M the pullback map f* is homotopic to the identity.

After recalling a few facts about the oriented cobordism ring and the connection to the
Spin-cobordism ring we continue by computing cobordism classes of mapping tori

and we obtain for example the following implications (for a full list see Section 4.1.2).

Corollary E (Corollary 4.1.21). Let d > 7 and let M d-1 pe g simply connected, closed,
oriented manifold. If d = 0(4), let all Pontryagin classes of M vanish. Let f: M =5 M bean
orientation preserving diffeomorphism. Then (f*)*: RT (M) — R* (M) is homotopic to the
identity.

Being more restrictive on the manifold M, we get a stronger result.

Corollary F (Corollary 4.1.23). Let d > 7and d # 1,2(8). Let M?~ be a simply connected,
stably parallelizable manifold. Then the action of Diff ™ (M) on R (M) is homotopy-trivial.

This result shows that the detection result of Hitchin [Hit74] is the only possible
one of this kind for high-dimensional spheres. An example of an implication for a

non-spinnable manifold is the following.

Corollary G (Corollary 4.1.27). Let X?*, k > 3 be a stably parallelizable, simply connected,
closed manifold and let H**~%(X;7/2) = 0 fori = 3, 5. Then Diff* (X x CP?) acts homotopy-
trivial on R* (X x CP?).

The next application we present is the canonical follow-up. Having a rigidity result for
an action it is natural to ask if one can draw conclusions about the quotient. However,
since the action of the diffeomorphism group is not free one has to consider the observer
moduli space M (M). This is obtained by taking the quotient with respect to the
subgroup of those diffeomorphisms f that fix a point g € M and whose differential
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dfz, at g is given by the identity. Using the results from the previous sections we
show that some of the results from [BERW17] on mo(R* (M) descend to mo(M (M)):

Theorem H (Theorem 4.2.5). Let d > 7 and let M@~ be a 2-connected Spin-manifold.

1. If d = 0(4) and all Pontryagin classes of M vanish, the space M} (M) has infinitely
many path components.
2. If d # 1,2(8) and M is stably parallelizable, the map wo(R*(M)) — mo(M} (M))

is a bijection.

Using the work from [GRW16] on the mapping class group of the manifold W2" :=

(5™ x S™)#9 we also detect nontrivial elements of 7y (M, (W2m)).

Theorem I (Theorem 4.2.6). For g > 5, n > 3 and n # 0(4) there is a surjective map
m(ME (WF")) — nggﬂ ® G,, where Qg?ﬂ denotes the BO(2n + 1)(n)-cobordism group
and
(Z)2)*  ifnis even
Gn =40 ifn =37
Z/4 otherwise.

Afterwards we give an application which is a bit more surprising: We use Theorem A
to define a homotopy-commutative and homotopy-associative H-space multiplication
pw on RYT(M), provided that W: ) ~~ M is a §-nullbordism of M. If W': ) ~
M' is another §-nullbordism of another manifold M’, we prove that Syepry7 is an
equivalence of H-spaces. We also show that the path components of invertible elements
with respect to 111 are independent of the choice of W. Using this H-space structure

we can also derive the following.

Theorem J (Theorem 4.4.1 and Remark 4.4.2). Let d > 7 and let M~ be a simply con-
nected Spin-manifold which is Spin-nullbordant. Let f be a Spin-diffeomorphism. Then the
pullback f*: R (M) — R* (M) is homotopic to the identity if and only if Sga—1,o,1) 11 1, (90)

and g, are homotopic in R (S4=1), where g, denotes the round metric on S41.

Using an argument in the style of Carr (cf. [Car88]) we also deduce a non-triviality

criterion.

Proposition K (Proposition 4.4.3). Let M be a (d — 1)-dimensional, simply connected Spin-
manifold and let W be manifold with A(W) # 0. Then SEw (g) + g for every psc-metric g

on M. In particular, SEw is not homotopic to the identity.
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Using this result we are able to fully classify the action of DiffSP (M) on R* (M) for

M a simply connected Spin-manifold of dimension 7:

Corollary L (Corollary 4.4.4). Let M be a T-dimensional, simply connected Spin-manifold
and let f: M = M bea Spin-diffeomorphism. Then the following are equivalent:

A~

. A(Ty) = 0.
. T is Spin-nullbordant.

1

2

3. f* is homotopic to the identity.

4. f*g ~ g forevery g € RT(M).

5. There exists a metric g € R (M) such that f*g ~ g.

The final Chapter 5 of this thesis is somewhat disconnected from the rest. Recently,
Kordafs [Kor18] generalized Chernysh’s Parametrized Surgery Theorem to a more
general class of curvature conditions. These are called deformable, codimension c surgery
stable curvature conditions, where ¢ > 3. We will abbreviate this by dCcSS. We apply
Kordafy’ result to derive an analogue of our main result for dCcSS which encode
the mixed-torpedo condition. Most of the proofs go through without change but the
dimension restrictions change. Let C' be a dCcSS that encodes the mixed torpedo
condition and let R (M) denote the space of metrics satisfying C. We get the following

result.

Corollary M (Corollary 5.2.10). Let d > 2c + 1 and let M9~ be a (c — 2)-connected
BO(d){(c — 1) manifold. If d = 0(4) let all Pontryagin classes of M vanish. Let f: M =M
be an orientation preserving diffeomorphism. Then (f*)": Ro (M) — R (M) is homotopic
to the identity for some n € N.

Afterwards we indicate how to extend the detection result of Botvinnik—Ebert—Randal-
Williams [BERW17] to dCcSS. We first prove a special case of the existence of stable

metrics.

Lemma N (Lemma 5.3.1). Let d > 2cand let V4=': S92 «s S92 pe g (¢ — 2)-connected,
BO(d)(c — 1)-cobordism. Also, assume that V is BO(d)(c — 1)-cobordant to S*~2 x [0,1]
relative to the boundary. Then there exists a metric g € Rc(V)g,,9, With the following
property: If W : S9=2 ~» 892 js cobordism and h € R(S9~2) is a boundary condition such

xiii



that h + dt? € Ro (S92 x [0, 1)) then the two gluing maps

(- 9): ReW)hg, — Re(W UV )pg,
(g, ): Re(W)gen — Re(VUW)g n

are homotopy equivalences.

We use this to show that for a certain class of manifolds M with boundary S4-1 the

action of Diff5(M) factors through an abelian group:

Theorem O (Theorem 5.3.2). Let d > 2cand let M@~ be a (c—2)-connected, BO(d)({c—1)-
manifold with boundary OM = S%=2. Also, assume that M is BO(d)(c — 1)-cobordant to
D=1 relative to the boundary. Then the image of the action homomorphism mo(Diff5(M)) —
To(hAut(Ro(M) ja-2)) is an abelian group.

Using this it should be possible to generalize the results from [BERW17] to dCcSS with

¢ = 3,4 that imply positive scalar curvature. This would show that the nontrivial

elements in 7, (R (M)) are in the image of the inclusion map R¢(M) < R (M).
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Preliminaries

1.1 Tangential structures and Moore-Postnikov towers

In this section we recall the notion of tangential structures and give the examples most
important to us. For d > 0 let BO(d) be the classifying space for the d-dimensional
orthogonal group and let U; := FO(d) O>(<d) R9 be the universal vector bundle over
BO(d). Let 6: B — BO(d) be a fibration. We call 0 a tangential structure.

Definition 1.1.1. A #-structure on a real rank(d)-vector bundle V' — X is a bundle map
[: V = 6*Uy. A 6-structure on a manifold W¢ is a f-structure on TW and a §-manifold
is a pair (W,1) of a manifold W and a 6-structure [ on it. For 0 < k < d a stabilized

O-structure on MF is a O-structure on TM @& R4k,

An important source of tangential structures are covers of BO(d). For example we
have BSO(d) — BO(d) or BSpin(d) — BO(d) or more generally BO(d)(k) — BO(d),
where BO(d) (k) denotes the k-connected cover of BO(d). Other sources of tangential

structures are Moore-Postnikov towers.

Definition 1.1.2 ([Hat02, p. 414]). Let X,Y be connected spaces and let f: X — Y be

a map. A Moore-Postnikov tower for f is a collection of tupels (P, fn, gn, hn)nen, where

1



2 Tangential structures and Moore-Postnikov towers

P, are spaces, f,: X — P, is an n-connected map, g,,: P, — Y is an n-coconnected

tibration and h,,: P,+1 — P, is a fibration such that the following diagram commutes:

hs3
Ps
ha
N
X P, =
Y hiN%
% Pl 1
f \
X Y

We call (P, fn, gn, hn) the n-th stage of a Moore-Postnikov tower.

Theorem 1.1.3 ([Hat02, Theorem 4.71]). Every map f: X — Y between path-connected

spaces has a Moore-Postnikov-tower, which is unique up to homotopy equivalence.

Definition 1.1.4. Let M“9~! be a connected manifold, let {: M — BO(d) be the classify-
ing map of the stabilized tangent bundle and let [: TM & R — U, be a bundle map
covering [. The n-th stage of the Moore-Postnikov tower for the map [ is called the
stabilized tangential n-type of M. We write B, (M) := P, in this case.

We call 6 once-stable (see [GRW14, Definition 5.4]) if there exists amap §: B — BO(d+1)
which fits into a (homotopy) pullback diagram as follows:

B B
| L
BO(d) BO(d+ 1)

We call 0 n-stable for n > 1if § is once-stable and  is (n — 1)-stable (with the convention

that O-stable is the empty condition). We call § stable if it is n-stable for every n > 1.

Proposition 1.1.5 ((GRW14, Lemma 5.9]). If d — 1 > 3, the tangential structure given by
the (stabilized) tangential 2-type of a manifold is stable.
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Example 1.1.6. 1. The tangential 2-type of a connected spin manifold M of dimen-
sion at least 3 is BSpin(d) x Bmi(M).
2. The tangential 2-type of a simply connected, non-spinnable manifold M of
dimension at least 3 is BSO(d).

Proof. The first part is obvious as BSpin(d) is 2-connected for d > 3. For the second part
we note that the map i: M — BSO(d) x Bmi(M) is an isomorphism on 7; as BSO(d)
is simply connected. Furthermore, we have the isomorphism mBSO(d) — Z/27Z
given by [8] — (w2 (0*Uy), B[S?]) for 0: BSO(d) — BO(d). The map l.: mo(M) —
m2(BSO(d)) — Z/27 sends a class [a] to

(wa(0*Uy), leo [S?]) = (I*wy(0*Uy), e [S?]) = (wa (1*0*Uy), a4 [S?])
=~TM

Since M is non-spinnable, it’s second Stiefel-Whitney class is nonzero. Furthermore, as
M is simply connected, the Hurewicz homomorphism 7o (M) — Ha (M) is surjective

and there exists an « such that the above expression is nonzero and M — BSO(d) is

surjective on . O

1.2 Mapping class groups

In this section we will give the definitions and present two models for the structured

mapping class group of a manifold.

Definition 1.2.1. For a smooth manifold M9~! we denote by Diff (M) the topological
group of diffeomorphisms of M with the C*°-topology. If M is oriented we denote the
subgroup of orientation preserving diffeomorphisms of M by Diff ™ (M). The (unoriented)
mapping class group I'(M) is defined to be 7o (Diff (M)) and the oriented mapping class
group T (M) is defined as mo(Diff *(M)).

Definition 1.2.2. Let M %! be a smooth oriented manifold. We define

BDiff’(M) := EDiff(M) x Bun(TM & R,0*Uy),
Diff (M)

where we use the model EDiff(M) = {j: M — R*~!} which is the (contractible)

space of embeddings and Bun(-, ) denotes the space of bundle maps. More concretely,

BDIiff’ (M) = {(N,I): N cR®"!, N2~ M and € Bun(TN &R, 0*U,)}.
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Given an embedding j: M — R*~! and a (stabilized) #-structure [ on M, we geta
base-point (j(M),1) € BDift?(M). Furthermore, we define

E2.o(M) := EDiff (M) x Bun(TM & R, 6*U,).
We also define the universal M-bundle with 6-structure Uy g by

Unro = (EDiff(M)xBun(TM O R, e*Ud)) x M — BDiff’(M).
Diff(M)
Remark 1.2.3. For fpso: BSO(d) — BO(d) we abbreviate BDiff’ss0 (M) by BDiff ™ (M).
Note that with our definition EDiff* (M) is not contractible but homotopy equivalent

to Bun(T'M @ R, 05;,4Uq) which has two contractible components (cf. Lemma 1.2.6
and Lemma 1.2.7)

Definition 1.2.4 (Structured Mapping Class Group). Let M be a smooth submanifold
of R*~! and let [ be a stabilized #-structure on M. The f-structured mapping class group
1%(M, 1) is defined by

T (M, 1) := 7 (BDiff? (M), (M, 1)).

For v: S* — BDiff? (M) we define the structured mapping torus M., := v*Upy .

Remark 1.2.5. The mapping torus M, has a fiber wise #-structure. Since the tangent

bundle of the circle is trivial, this gives a #-structure on M,,.

Before further analyzing the structured mapping class group let us have a closer look
at the space of bundle maps Bun(V, §*Uy) for a rank(d) vector bundle 7y : V' — X over
a finite CW-complex X. Let 7: V' — Uy be a fixed bundle map and let 7: V' — BO(d)

be the underlying map of spaces. We get an isomorphism of bundles

ar: V= 17Ug={(p,u) € X xUy: 7(p) = my,(u)}

w = (my(w), 7(w)).

Let7: 7*U; — Uy and 0: 0*U,; — Uy denote the induced maps. Then 7 o a; = 7. Now
we define lifts; y == {{: X — B: 6ol = 7} to be the space of lifts of 7 along 6 and
Bun, = {l € Bun(V,0*U,): 6 ol = #} to be the space of lifts of bundle maps. Let zy
denote the zero section of V. We get a map v: Bun(V, 6*U;) — Map(X, B) defined by

v(l) = gy, ol o zy. This induces a map v, 5t Bun, 5 — lifts o.
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Lemma 1.2.6. The map v.. 5: Bun. ; — lifts; g is a homeomorphism.

Proof. We prove this lemma by constructing an inverse map. Let [ € lifts; 9. Then we
define i
b(1): V 2o U, -5 07U
~——
=1*0*Uy

and we claim that [ ~— b(() is an inverse to the map v. Note that [: [*0*U,; — 6*U, is
given by I(p,u) = (I(p), u). Then

0, 5(b(0) (B) = Torv, 010 a7 0 21 (p) = mpour, (1p 7 (20 (1)) )
=m0, (10). 7 (v (0)) ) = U0)
andso v, gob = id.

Leti € Bun. 5. Then for w € V we have I(w) = (bj, u;) for some (b, u;) € 0*Uy. Note
that b; = mpyy, © [ o zy(my(w)) and (b, u;) = u;. Since [ is a lift of 7 we see that

u; = 0(I(w)) = #(w). Now we compute

A

b(v; 5(1)) (w) = mgey;, 0 I 0 2v © ar(w)
= Tp+y7, © lo zy (my (w), 7(w))

= (mo-us 0 Lo 2y (my (W), #(w)) = (b, ug) = {(w). O

Lemma 1.2.7. The map Bun(V, 8*U;) — Bun(V, U,) is a Serre fibration.

Proof. We need to consider the following lifting problem:

{0} x D Bun(V, 0*Uy)
[ A
0,1 x D a Bun(V, Uy)

Using the map v from above we get a diagram

vo A

{0} x D Map(X, B)
I
0,1] x D —22% Map(X, BO(d)).
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By Lemma B.1 we know that Map(X, B) — Map(X, BO(d)) is a Serre-fibration and

the dashed arrow A’ in this diagram exists. We then define

At p)(w) == (A'(t,p) (v (W), alt, p) (w)). 0

Since Bun(T'M @ R, Uy) is contractible by the classification of bundles, Lemma 1.2.6
and Lemma 1.2.7 imply that the space Bun(T'M @ R, 655,U4) has two contractible

components provided that M is orientable.

Now let us continue investigating T'?(M,[). There is a forgetful map BDiff’(M) —
BDiff (M) that induces a map I'?(M, 1) — I'(M) = mo(Diff(M)). So, every element
~v € T?(M, ) has an associated isotopy class of an actual diffeomorphism f: M — M.
The underlying (unstructured) manifold of the mapping torus M, is given by the usual
mapping torus T of f.

Proposition 1.2.8. Let 0: BO(d)(k) — BO(d) and let M be a (k — 1)-connected 6-manifold
of dimension d — 1 > k + 1 > 3. Then the forgetful map BDiff’(M) — BDiff ™ (M) induces
a surjection

(M, 1) — TH(M)

Proof. The forgetful map BDiff’(M) — BDiff* (M) fits into the following diagram of

fibrations.

Diff (M) Diff (M)

| |

Bun(TM & R,0*Uy) «— EDift? (M) —— EDiff (M) —— Bun(TM @ R, 0550U4)

| |

BDift? (M) —— BDiff " (M)

The map m (EDIiff’(M)) — m(EDiff " (M)) is surjective, because components of
Bun(T'M, 655,U4) are contractible. Next, let us consider the map BO(d)(m) —
BO(d){m — 1) for 2 < m < k. Its homotopy fiber F is given by

QK (7, BO(d),m) ~ K(n,, BO(d),m — 1) = K (7, BO,m — 1).

By our assumption on M there exists a lift of M — BO(d)(m — 1) to BO(d)(m). The

obstructions to the uniqueness up to homotopy of such a lift lies in the groups (cf.
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[Hat02, pp. 418])

H™ 1M, 7,,BO) ifn=m-—1
H" (M, m,(F)) =
0 else.

Since M is (k — 1)-connected and m > 2 all these groups vanish and so the lift to
BO(d)(m) is unique. From Lemma 1.2.6 and Lemma 1.2.7 we deduce that for every
izso] € mo(Bun(TM & R, 0%5s0Ua)) there exists a unique lift ] € mo(Bun(TM &
R, 0*Uy)). Therefore the map 7o ( EDiff’(M)) — mo( EDiff " (M)) is injective and the

Proposition follows from the first half of the 5-Lemma. O

Let us have a closer look at the case of B = BSpin(d). Let us recall the more
traditional description of Spin-structures (cf. [Ebe06, Chapter 3]): A Spin-structure
o on a manifold M is a pair (P, «) consisting of a Spin(d)-principal bundle P and
an isomorphism a: P Xgpin(q) RY =, TM @ R. An isomorphism of Spin-structures
oo = (FPo, ) and o1 = (P1, aq) is an isomorphism 5: P =, Py of Spin(d)-principal
bundles over idys such that a; o (8 Xgpin(a) idga) = ao. If f: M — M is an orienta-
tion preserving diffeomorphism and ¢ = (P, a) is a Spin structure on M, we define

fro = (f*P,(df) " o fra).

The first naive idea of a definition of Diff>P'" (M, ¢) is the following:

Diff>P" (M, o) := {f € Diff *(M): ¢ = f*o} C Diff t(M).

naive

However this cannot work as illustrated by the following example: Consider M = pt.

This has precisely one spin structure and one self-diffeomorphism, so Diffi‘;i;e (pt)isa

ﬁSpin

naive

point, and hence so is its classifying space BDi (pt). Homotopy classes of maps

St — BDiffig;ge (pt) should classify spin structures on the circle (as point bundles over
S1). However, there are 2 non-isomorphic Spin-structures on the circle. So, this is not
the correct automorphism space of a Spin-manifold. Also note, that BDiff>P™ (M) is

possibly not connected, so Diff>P" (M) cannot be a group.

The correct definition of Diff Spin(M ,0) is the following (cf. [Ebe06, Definition 3.3.3]):
Let 0¢, 01 be two Spin-structures of M. A Spin-diffeomorphsim (M, o) = (M,o1)isa
pair (f, f) consisting of an orientation preserving diffeomorphism f: M = M and an
isomorphism f of Spin-structures o and f*c;. We denote by DiffSP" (M, ov), (M, 01))
the set of Spin diffeomorphisms (M, o) =5 (M, 01). This gives rise to the groupoid
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DiffSPi (M) which has Spin structures on M as objects and morphisms sets are given
by DiffSPn((M, o), (M, 01)). For a Spin-structure o on M, we define

DiffSPI (M, o) == Diff P! (M, o) (M, 0)).

We can now give an easier proof for and actually a strengthening of Proposition 1.2.8.

Proposition 1.2.9. Let M be a simply connected Spin manifold. Then the forgetful homomor-
phism DiffSP™ (M, o) — Diff ™ (M) is surjective and its kernel has two elements.

Proof. Since M is simply connected, the Spin-structure o of an oriented manifold
is unique up to isomorphism. So for every orientation preserving diffeomorphism
fi: M = M, there is an isomorphism o = f*o, hence the map is surjective. The rest
follows from [Ebe06, Lemma 3.3.6]. O

It would be conceptually satisfying to also give a description of a groupoid Diff’ (M)
that has BDiff’(M) as a classifying space and whose elements are related to diffeo-
morphisms. The correct one is the one which has bundle maps [: TM @ R — 6*U,
as objects. A morphism is a pair (f, L) consisting of a diffeomorphism f and a path
L of bundle maps connecting Iy and [ o df. However, concatenation of paths is only
associative up to homotopy, so one would need to consider this as an co-groupoid. In
order to give a model for the mapping class group one does not need the language of

oo-categories, though.

Definition 1.2.10. For a -structure [ on M9~! we define

B (M) = {( £.L): f: M — M is a diffeomorphism } /N

L is a homotopy of bundle maps [ o df ~ [

where the equivalence relation is given by homotopies of f and L.

We want to compare I'?(M, 1) and B?(M, ). First note that BDiff’ (M) classifies M-
bundles with #-structure. So, elements in (1, [) are precisely given by fiber bundles

over [0, 1] with #-structures on the vertical tangent bundle that restricts to (M, 1) over
the points {0, 1} € [0, 1].

For a representative (f, L) of an element in BY(M,[) we get such a bundle E — [0, 1]
by gluing [0, 3] x M to [%, 1] x M along f and the ¢-structure is given by [ on [0, SIx M
and by the rescaled path L on [4, 1] x M. Replacing f and L by homotopic maps results
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in an isomorphic bundle E’ and so we get a map P: B?(M, [) — I%(M, ) defined by
P(f,L) = E.

There is also a map in the other direction. Let E — [0, 1] be an M-bundle with 6-
structure [ on the vertical tangent bundle of E. Since the interval is contractible, there
exists a diffeomorphism ¢: £ = [0,1] x M that fibers over the interval and restricts
to the identity on {0} x M. We get a diffeomorphism ¢ := ¢(1, _) of M. Furthermore,
L; = (Ig o dip; 1) |(tyx s defines a path of bundle maps from [ tol o dip;. We get a map
Q: T?(M,I) = BY(M,I) by Q(E) = (¢7*, L). This construction is invariant with

respect to isomorphism of the bundle E.

Proposition 1.2.11. The above constructions give mutually inverse group isomorphisms
between T (M, 1) and B? (M, 1).

Proof. Let [f, L] € B’(M, ). Then there is a diffeomorphism ¢ : P(f, L) =, [0,1] x M
given by the identity on [0, 3] x M and by f~! x id on [4,1] x M. Then ¢; ' = f and
the bundle homotopy constructed above is homotopic to L by contracting [0, 3] x M
and stretching [3, 1] x M.

Now, let [E] € T?(M, ). Let¢: E = [0,1] x M and L, be as above. Then Q(; ', L)
is isomorphic to E by contracting [, 1] x M and stretching [0, 3] x M composed with
1. 0

Example 1.2.12. Since we usually will be interested in the case where 6 is the (stabilized)
tangential 2-type of a high-dimensional manifold M, let us as have a closer look at the
case of B = BSpin(d) x BG. The map 6: BSpin(d) x BG — BO(d) factors through
the 3-connected cover fspi, : BSpin(d) — BO(d) and we get

Bun(TM & R, 0"Uy) = Bun(TM @ R, 05,,;,Ua) x Map(M, BG).

So, a f-structure [ on M is given by a Spin structure o on M and a map M — BG. Let
¢ = [f, L] € B’(M,l). Then f is an orientation preserving diffeomorphism of M and
L is the homotopy class of a path connecting the bundle maps ngin, ZSpin odf: TM &
R — 65,,;,Uq together with the homotopy class of a path connecting the maps « and
ao f: M — BG.

If G = m(M,z) for some base-point x € M, this means that the induced map
for m(M,z) — m (M, f(z)) is given by conjugation by a path v: [0,1] — M with
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7(0) = z and y(1) = f(z). We say that f acts on the fundamental group by an inner

automorphism in this case.

1.3 Cobordism groups

In this section we define the §-structured cobordism set of manifolds with fixed bound-
ary. We compare it to the f-structured cobordism group of closed manifolds. We

assume that all cobordisms are e-collared for some e.

Definition 1.3.1. Let : B — BO(d) be a once-stable tangential structure and let
MZ, M~ be compact manifolds with (stabilized) f-structures Iy, ;. We define the

bordism set of manifolds with §-structure and fixed boundary by

Q) (Mo, lo), (My,11)) :=={ (W, 0,91, 0)}/ ~ .

Here, W is a d-manifold with boundary oW = o)W [[ o1 W, /e Bun(TW,0*Uy) is a
bundle map and v; = (f;, L;), ¢ = 0,1 are §-diffeomorphisms, i.e. f;: ;W — M, are
diffeomorphisms and L; are homotopies of bundle maps (—1)l; o df ~ /|1y, where
—I; denotes the bundle map I 0 (ido(-1): TM R —-TM®dR — 6*U,. We call M
the incoming boundary and M, the outgoing boundary (see Figure 1.1).

I I W
Mo <= 9,W W — -M,

FIGURE 1.1: A representative of [W] € QY ((Mo, lo), (M, 11)).
The arrows indicate the direction of the 6-structures.

The equivalence relation is given by the cobordism relation: We say that (W, ¢, ¢, ¢)
and (W', (), ¢}, ¢') are cobordant if there exists a d + 1-dimensional §-manifold (X, /x)
with corners such that there exists a partition of 0X = |J,_, 39X together with
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f-diffeomorphisms

MQXI%&()X MlegagX
W =9, X W= X

such that f-structures and diffeomorphisms fit together (see Figure 1.2).

2

M, x [0,1] M, x [0,1]

2l
W

FIGURE 1.2: The cobordism relation in Q9 ((Mo, lo), (M1,11)).

Remark 1.3.2. 1. Since 0 is a fibration we can arrange the §-structure on W so that

the f-structures (—1)'l; o df; and ¢|5,;y actually agree.

2. Let 6 be once-stable. Q9((M, 1), (M, 1)) becomes a monoid via concatenation of

cobordisms and identifying them along the boundary diffeomorphisms, i.e.
(W' b, b 0 - (W, 4o, by, £) == (W Uprof W’,¢07¢1,£Uf60f;1 ).

We will later see that this monoid is actually is a commutative group (cf. Corollary
1.3.7). More generally, this gives rise to a category QZ with objects (M, [) and
morphism set QY (Mo, l), (M, Zl))

3. Note that one has a map QY((M, 1), (M, ) — Q%(0,0) = QY given by identi-
tying the equal boundaries of a cobordism W: M ~+ M. This map gives an

isomorphism of groups (cf. Corollary 1.3.7 and the remark below it).

The following proposition will be very useful later on.

Proposition 1.3.3. Let 6 be a once-stable tangential structure and let W My ~~ M be
0-cobordism. Then there exists a 0-structure on WP : My ~» My such that W U W°P ~
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My x [0,1] rel My x {0,1}. In particular, if W: O ~ M is a 0-nullbordism, the double
dW := W U W°P is nullbordant and W°P I1 W is cobordant to the cylinder on M.

Proof. Consider the manifold with corners W x I. We introduce new corners as in

Figure 1.3.

MOX[O,l] M0

Mo R - R
M,® * Mo My Wop o

W

FIGURE 1.3: Introducing corners to obtain the desired cobordism

Let us now construct the f-structures’. Let §: B — BO(d + 1) be as in the definition of
once-stable. We get a f-structure lyy: TW @ R — 0*Ugy . Since W < W x [0,1] is a

homotopy equivalence there is a unique extension up to homotopy

TW &R

T(W x [0,1])

|

where the vertical map sends v € R to the inwards pointing vector. This gives a
#-structure on W x I and by restriction a §-structure on W°P as 6 is once-stable. [
We obtain the following.

Corollary 1.3.4. Let 0 be once-stable. Then the the category QY is a groupoid. In particular
Q9 ((M,1), (M,1)) is a group.

Now we prove another useful tool.

Proposition 1.3.5. Let 0 be once-stable. Then the action of Qf on QY((Mo, ), (M, 1))

given by disjoint union is free and transitive.

I This is adapted from [GRW14, Proof of Proposition 2.16].
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Proof. Since disjoint union is associative up to cobordism and disjoint union with the

emptyset is the identity and this really defines a group action.

If QY ((Mo, lo), (M1,11)) = 0 the statement is trivial. So let (L, ¥{, ¥, 0r): (Mo, lp) ~
(Mi,11) be a cobordism. Let ®1: QY — QY ((Mo,lo), (M1,11)) be given by (V) =
V 1II L. Also let

@LI QZ((M(), lo), (Ml, ll))—> Qg

be defined given by gluing in the cobordism (L°P, ¢f, ¢§, ¢77) along the boundary as

follows: We concatenate with L°P and then identify the equal boundaries:
(Mo, o), (M, 1)) = (Mo, bo), (Mo, o)) — 9

We will prove the Proposition by showing that ® and ® are mutually inverse bijections.

The easy part is
®(@([V]) = ([V I L) = [VII(LULP)] = [V]

by Proposition 1.3.3. It remains to show that (W U L°P) IT L is cobordant to 1. First we
note that (W, v, 1) is diffeomorphic to (Mo x I Uy, W Uwfl M; x I,id,id) and so it
suffices to consider the case that all boundary identifications are given by the identity.
We now decompose &7, (W) 1 L = (W U L°P) IT L as follows:

%::M()X[O,&]UMlX[l—E,l] Vi:L
VQiZLOP V=W

Note that

AV = (Mo x {0}) IT (M x {e}) IT (My x {1 — e}) II(My x {1})

=04+ Vo

Vi = Mo II My = 0Va = 0V3
By identifying 0, Vj and 0V, with 0V, and 0V3 in different ways we obtain

VouVi =1L VouUVg =LPUW
VouVs=W VoUVs=LPUL=dL

We will now give a cobordism X: (Vo U Vi) II (Vo U V3) ~» (Vo U V3) I (Vo U ).
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/ [ /A

FIGURE 1.4: Introducing corners at the boundary of V; x [0, 1]

We construct this by taking V; x I for every i = 0, 1, 2, 3, introducing corners at the
boundary (and at 0, V') respectively) as shown in Figure 1.4 and gluing the obtained
manifolds together along parts of the boundary as shown in Figure 1.5. The f-structures

are given b l} @ idr (the arrows in Figure 1.5 indicate the incoming and outgoin,
g y R g g gomg

boundary of X). O

FIGURE 1.5: The cobordism X : (Vo U Vy) IT (Vo U V3) ~ (Vo U V3) I (Vo U V)

Remark 1.3.6. Proposition 1.3.5 can also be proven using structured cobordism cate-

gories. The presented proof however is much more direct.

As a corollaries we get:

Corollary 1.3.7. Let (M, 1) be a (d — 1)-dimensional §-manifold. Then the map

®: QY =5 QY((M, 1), (M, 1))
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given by (V, ) — (M x [0,1] 11 V,id, id, (I & idg) 11 0) is an isomorphism of groups. In
particular, Q((M,1), (M, 1)) is an abelian group.

Proof. It is a group homomorphism because

PVIW)=Mx[0,1] I VIW
= (M x[1,2] I V)U(M x[0,1] II W) =&(V)UdW).

The rest follows from Proposition 1.3.5. O

Remark 1.3.8. The inverse map is given by mapping (W, g, ) to the manifold ob-
tained by gluing 9, W to 9 along the diffeomorphism ;" o ¢);.

Corollary 1.3.9. The map T%(M, 1) — QY given by [y] — [M.,] is a homomorphism.

Proof. Consider «: [0,1] — BDiff?(M) as a path from (M, ) to itself. We define the
mapping cylinder map by A: T9(M,I) — QY(M, M),y — (v*Unp,id,id). Since the
bundle classified by ~g * 71 is the same as the union of the bundles classified by +;, this

satisfies

Ao *71) = ((70 * 71)*Unr,1d, id)
= (WUme Ui Unmp,id,id)
= (’YSUM’Q, id, id) U (’}/TUJ\/L@, id, id) = A(’)/()) U A('yl).

Since the isomorphism QY(M, M) — QY is given by gluing the boundary, we have
M., = ®(y*Uyr ) and hence

Mgy, = ®(A(v0 ¥ 71)) = S(A(70)) L 2(A(11) = My LT M, H

Remark 1.3.10. Using the model B?(M, 1) for the mapping class group, we see that
the map Ao P: BY(M,l) — QY(M, M) is given by (f,L) — (M x [0,1],id, (f,L)~")
for P the map from Proposition 1.2.11. Note that since Q9(M, M) is commutative,
(f,L) — (M x [0,1],id, (f, L)) is a homomorphism as well.
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1.4 Morse theory

In this section we recall the basic notions from Morse theory and parametrized Morse

theory.

Definition 1.4.1. Let W%: My ~» M, be cobordism with collars. A Morse function

f: W —[0,1] is a smooth function such that

1. It is collared, i.e. f~1([0,¢€)) = [0,¢) x Mo, f~1((1 —¢&,1]) = (1 —&,1] x M for
some e > 0and f(t,p) =tfort € [0,e) U (1 —¢,1].

2. For every critical point p € W, d?f, has rank d. These points are called nondegen-

erate critical points.

The following is the well-known Morse-lemma, see for example [Mat02, Theorem
2.16].

Lemma 1.4.2. Let p € W be a nondegenerate critical point of a Morse function f. Then there
exists a chart k: U C R — W centered at p (i.e.0 € U and k(0) = p) and \ € {0,...,d}
satisfying
A d
fok($17"'7xd) :f(p)+z_x22+ Z xz2
i=1 i=A+1

We call k a Morse chart and X the index of f at p.

Later on, we want to investigate the handle decompositions associated to two different
Morse functions. To this end, we need to understand how to compare Morse functions.
The space of all Morse functions is not connected in general which means in order to

connect two Morse functions by a path one has to allow further singularities.

Lemma 1.4.3 ([Igu88, Lemma 1.5, p.298]). Let W: My ~+ M be a cobordism and let
f: W — [0, 1] be a smooth function such that f~1([0,€)) = [0,€) x My and f~1((1—¢,1]) =
(1 —e,1] x M, for some ¢ > 0. Assume that there also exists a critical point p € W of f such

that rank(df,) = d — 1. Then there exists a chart k: U C R — W centered at p such that

f o k(xlv s 7xd) = f(p) + T(xl) + Q<m27 cee 7xd)/ where q= Z;\:Q _3312 + Z(z‘j:/\Jrl x? and

r: R — R is a smooth function.

Definition 1.4.4. We call a singularity p € W as in Lemma 1.4.3 an A;-singularity if
r(0) = 0 for i <1 and ++1)(0) # 0 and we define A — 1 to be the index of f at p. We
call an As-singularity a birth-death-singularity. If all critical points of f are A; or A,

singularities, we call f a generalized Morse function.
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Lemma 1.4.5 ([Igu88, Theorem 1.7, p. 301]). Let p be an A; singularity of f: W — [0, 1].
Then there exists a chart k: U C R* — W centered at p such that

bY d
fok(ay,....xa) = fp) +alt + 3 a2+ 3 o?
1=2

i=A+1
By abuse of notation, we again call k a Morse chart centered at p.

Definition 1.4.6. Let f;: W — [0, 1] be a path of generalized Morse functions and let p
be a birth-death-singularity of fo. Let k: R? — W be a Morse chart centered at p. We
call p generically unfolded by f; if %le f:(0) #0.

Definition 1.4.7. Let h: I x W — [0, 1] be a collared path of generalized Morse func-
tions, i.e. hy(z) = hy(z) for all x in a neighbourhood of 0. We call this path generic,
if there exist disjoint finite subsets 7p, 77 C I such that

1. h(t,-) is a Morse function for t ¢ Tj.

2. For t € T, the function h(t, ) has precisely one birth-death-singularity which is
generically unfolded.

3. h(t,_) has distinct critical values for ¢ ¢ T;.

4. If t € T} then h(t,_) has precisely 2 critical points pg, p1 with agreeing critical
values. These shall satisfy %h(t,po) # %h(t,pl)

We call T = Ty U T the set of singular times of hy.

Remark 1.4.8. For a path of generalized Morse functions there exists the so-called Cerf-
Kirby-graphic which depicts the movement of the critical values along the time axis
(See Figure 1.6)

0 So S1 S2 1

FIGURE 1.6: A Cerf-Kirby-graphic
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Lemma 1.4.9 ([Igu88, Lemma 2.5, p. 308]). If p is a birth-death singularity of fo generically
unfolded by f, there exists an € > 0, a chart k centered at p and path of generalized Morse
functions hy isotopic to f; by an isotopy supported in a small neighbourhood of p such that

A d
htokz(:z:l,...,md):f(p)+m:f:ttm1+2—:n?+ Z x?
=2 i=A+1

fort € (—¢,¢).

The following Lemma is due to Cerf [Cer70]. Since the original source is in french, we

decided to give a proof in the appendix for convenience of author and reader.

Lemma A.2. Let hg, hi: W — [0, 1] be Morse functions with distinct critical values. Then

there exists a generic path of generalized Morse functions connecting them.

1.5 Handle decompositions of cobordisms

In this section we discuss the relation between Morse functions on W and handle
decompositions of W. First, we give a model for attaching a handle. The one given in

[Per17, Construction 8.1] is convenient.

Construction 1.5.1 (Standard trace). Let ¢ € (0, 1) be fixed and let k € {0,...,d}. We

fix once and for all an O(k) x O(d — k)-invariant submanifold
T, C [0,1] x D* x D4=F

with the following properties (see Figure 1.7 for a visualization)

1. (s,0,0) € Ty if and only if s = %
2. The projection T, 2= [0,1] is a Morse function and (3,0,0) is the only critical
point of this Morse function. Its index is k.

3. We have the following equalities for intersections

Ti N ([0,€) x SF71 x D47F) = [0,¢) x §*1 x DIF
TN ((1—¢,1] x DF x §47F71) = (1 —¢,1] x DF x §4-F-1
T N ([0,1] x S*71 % §97F=1y = [0,1] x Sk~ x gd=F~1
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4. The boundary of T}, is given by
T, = ({0} x SF=L x DRy U ({1} x D* x STF1y U ([0,1] x §*71 x §4=F-1),

We call T}, the standard trace of a k-surgery.

[0,1]

FIGURE 1.7: A standard trace.

Definition 1.5.2 (Trace of a surgery). Let M be a manifold and let ¢: S¥~1x D% < M
be an embedding. We call such an embedding a k-surgery datum in M and we define

the trace of ¢ to be

tr () == ([0.1] x (M \im ) ) Uiagy o T

There is a Morse function A, : tr (¢) — [0, 1] with precisely one critical point with value
3 and index k. We define M,, := h;*(1) = (M \ im ¢) U (D¥ x §%F~1),

For a surgery datum ¢ in M there is an obvious reversed surgery datum ¢ : S¢—+=1 x
D¥ — M, and there is a canonical diffeomorphism (M,)z» = M. We define the
attaching sphere of ¢ to be o(S*~! x {0}) € M and the belt sphere of ¢ as ©°P({0} x
Sd=k=1y C M.

Definition 1.5.3. 1. Let W: My ~» M, be a cobordism and let p: S*¥~1 x DIF —
M, be an embedding. We define the manifold W with a k-handle attached along ¢
tobe W U tr (p).

2. A handle decomposition of W : My ~+ M is a collection of manifolds Ny, ..., Ny,
embeddings ¢;: S*~! x D@k — N, fori = 1,...,n and diffeomorphisms
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f(): MO i) Nl, fz (]\]'1)90Z i} Ni+1 fori = 1,...,n—1and fn: (Nn)gon i M1

such that there exists a diffeomorphism rel My, M;
W = My x [0,1] Ug, tr (o) UptrppU---Utr (Pn-1) Uy, My x [0, 1].

We call f; the identifying diffeomorphisms and ; the surgery data.

Remark 1.5.4. For a diffeomorphism f: M) =, M, and a surgery datum ¢ in M there
exists a canonical induced diffeomorphism F': tr ¢ — tr (f o ¢) that restricts to f on
the incoming boundary and to a diffeomorphism f,: (My), — (M1)y., satisfying
fo 0@ = (f o ¢)°? on the outgoing boundary. Furthermore f, is equal to f on
My \ im ¢.

In order to compare different handle decompositions of a manifold, we will now
describe the model for handle cancellation. Let W : My ~~ Mj be a cobordism which
has a handle decomposition with two handles®: Let ¢: S¥~! x D4=% — M, and
@' SF x DTkl (Mo), be two surgery data such that the belt sphere of ¢ and the
attaching sphere of ¢ intersect transversely in a single point. By [Wall6, Theorem
5.4.3] there exists an embedding of an disk D1 = D ¢ My such thatim ¢ ¢ D and
im ¢’ C D,,. Therefore it suffices to have a closer look at handle cancellation on the
sphere. Let My = D U D’ = S9! where D' is another disk. Let a € S¢*~! and b € S*
such that ¢°P(0,a) = ¢/ (b, 0) is the unique intersection point. Since the belt sphere of ¢
and the attaching sphere of ¢’ intersect transversally here, there is a disc S*¥ C S* such
that ¢'(S¥ x {0}) = ¢°?(DF x {a}) after possibly changing the coordinates of D. Let
S = Sk \ Sk. Then ¢/(S* x {0}) C M \ im ¢ (see Figure 1.8).

({0} x S @'(Skx {0}

)cp'(s‘f x {0}

@'(Skx {0} ~— =

(P(Sk_l X Dd—k)

FIGURE 1.8

2For ease of notation we assume that fy = id M, and fi =id( Mo)y-
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Because of transversality we may isotopy ¢’ such that ¢/(S* x D¥*=1) ¢ M\ im ¢.
Then p(S¥=1 x DI=F) U ¢'(S* x DI=F=1) = D=1 (cf. [Wall6, Lemma 5.4.2.]) and
also A = S4=1\ (p(S*~1 x Di—k) U/ (§F x Di—k—1)) = D=1 By choosing an iden-
tification A = DF x D4=F=1 we have ¢/(S* x DI *=1)u A = ¥ x DI=F~1 We see
that

S =(p(8* " x DTFY U (SE x DT U A

Gk x Dd—k-1

and hence we can change coordinates on S%~! by changing the embedding D¢~! — M
such that ¢ is the embedding of the first factor of the solid torus decomposition
ak: §4-1 =5 (Sh=1 x Dd=k) U (DF x §9F=1) je.apop = L(sk-1x pi—k)- We get an
induced map

ak: 871 = (DFx §UE ) U(DF x 597 1) = §Fx 897kt = (SEx DI=F (S x DIk,

Because of transversality we may isotope ¢’ so that (a’;) o ¢’ is equal to the inclusion
of the first factor in S¥ x DI=k=1y §* x DI=k~1 Then

(ah)yr: (SE71)y —> DEFL x gd=k=2 g pi=k-1

This is a solid torus decomposition of (S¢1),.. We get a diffeomorphism Hj: S9! x
[0, 2] =5 tr (p) Utr (¢) which fixes the strip D’ x [0,2] C (S971) x [0,2] and the lower
boundary point-wise. We may also assume that H}, restricts on the upper boundary to
a diffeomorphism 7;,: $41 =5 (S&71),r which translates (af), into the solid torus

k+1

decomposition a**1, i.e. ((ak), o m) = a**'. For every k € {0,...,d} we fix the

diffeomorphisms H}, (and hence 7;) once and for all.

Next we will recall from [Mil65] how a Morse function gives rise to a handle decompo-

sition.

Construction 1.5.5 ([Mil65, pp. 28]). Let W: My ~» M; be a cobordism and let h: W —
[0, 1] be a Morse function with critical points py, . . ., p, which have pairwise distinct
values ¢; < -+ < ¢ and indices k1, . . ., k. Fore € (0, min;(c1, ¢i41—¢i, 1 —¢y)) we get3
W; = h~Yci—¢,ci+e|, Zi := h™Yci+e, cip1—¢] sothat W = ZoUW1UZ U - -UW,,UZ,,.
Let V be a gradient-like vector field for A, i. e. a vector field such that V' - A > 0 away
from the critical points and near critical points it is equal to the gradient vector field of f
with respect to some background metric on W. Now Z; is a cobordism without critical

point and following the flow-lines of V gives a diffeomorphism «;: h=!(¢;_1 + €) =

3Here we have the convention that ¢o := —¢, ¢ny1 = 1 +&.
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h=1(c; —¢). Also we get a surgery embedding ; into ™! (¢; — ) and a diffeomorphism
Bi: trp; = W; as follows: Let g: D§ — W be a Morse chart centered at p;. For
(a,b) € Ski—1 x D?*i we define ;(a, b) by taking g(ga, %b) and following the flow-line
of V until we reach h=!(c; —¢). For (s,p) € [0,1] x (h~Y(c; —¢) \im ), let a; (s, p) be the
unique point ¢ lying on the flow-line of V' through p which satisfies h(p) = ¢; — e + 2s¢
and for (s, a,b) € Tj,, the value 5;(s, a, b) is similarly defined to be the unique point ¢
lying on the flow-line* through g(%a, gb) that also satisfies h(p) = ¢; — € + 2se.

Now we can give a handle decomposition of W relative to My: Let IV; := h=Y(ci—¢), @i
as above and let fy := ag and f; = a; o 8; for ¢ > 1. This gives a handle decomposition
of W.

Remark 1.5.6. 1f ¢ is a different coordinate neighbourhood of W at p;, g1 o ¢’ is a
diffeomorphism of the disk which preserves (z1, ..., zx,) and (g, 41, . . . , £4) and hence
itis isotopic to an element in O (k) x O(d—k). Since V' is unique up to isotopy, a different
choice of V' gives isotopic surgery embeddings ¢; and identifying diffeomorphisms f;.
If h; is a path of Morse functions with distinct critical points, the difference of handle
decompositions for hg and h; is the following: Critical points can be moved around
but their order cannot be changed nor can they be cancelled. This means that we get

isotopic surgery data ¢; and isotopic diffeomorphisms f;.

Proposition 1.5.7. Any two handle decompositions of W only differ by a finite sequence of

the following moves:

~

. An identifying diffeomorphism is replaced by an isotopic one.

2. A surgery datum is replaced by an isotopic one.

3. A k-surgery datum is precomposed with an element A € O(k) x O(d — k).
4. The order of two surgery data with disjoint images is changed.

5. Let v and ¢’ are k- and (k + 1)-surgery data such that the belt sphere of p and the
attaching sphere of ' intersect transversally in a single point. Then the two handles are

replaced by the identifying diffeomorphism id # ny.

Proof. First let hy and h; be any two Morse functions on W: My ~» M; with the
number of critical values denoted by my and m1, respectively. By an isotopy through

Morse functions with distinct critical values, we may assume that the critical values

*1f (a,b) # (0,0), this flow-line is unique.
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3 2mo—1
Y 2mp’ """ 2myo

1 3 2mi—1

and Tl T oy

are ﬁ , respectively. By Lemma A.2 there
exists a generic path of generalized Morse functions connecting hy and h;. Let T' =
{t1,...,tx} C [0, 1] denote the set of singular times, fix ¢ < % min;—o _ p{ti,ti—ti—1,1—
tr} and let T := Ule (t; —e,t; +¢€). Outside of T, h; is a path of Morse functions with
distinct critical values. This is described in Remark 1.5.6 and is covered by relations 1
and 2. By isotoping h; we may further assume that it has the following property: If
t ¢ T, and h; has m critical values, then their values are ﬁ, %, ce % The effect

of this isotopy on the Cerf-Kirby-graphic is shown in Figure 1.9.

14+ I 1] H
\N / \ I
S~

/]

0 1 0 1

FIGURE 1.9: Left: The Cerf-Kirby-graphic associated to a generic path of generalized
Morse functions. 7 is the grey region.
Right: The Cerf-Kirby-graphic for the isotoped path of generalized Morse functions.

We now consider this problem locally in ¢, i. e. we only have to examine what happens
at a singular time ¢;. We may assume that h¢, . has either 2 critical points with value
and % or none at all. The same holds for /i, .. There are 2 possibilities: Either h¢; has
two critical points with the same value or it has a birth-death-singularity. In the former
case this means that the critical values interchange (since critical values are isolated, we
may assume the surgery data are disjoint). Now let p be a death-singularity (the case
of a birth-singularity can be dealt with completely analogously). Since p is generically
unfolded by h;, by Lemma 1.4.9 there exists a 6 > 0 and a Morse chart g: Di — W
such that for t — ¢; < § we have

k d
hi(g(z, ..., 2q)) =} — (tj — 1) - 21 + Z —x2 + Zazf + const.
=2 k+1

Now, for ¢ < t; there are two critical points of h; o g, namely x4 := (£,/%; = 7,0,...,0)

of index k and k + 1 respectively. In order to get Morse charts g+ for x4 it suffices to
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change g in the first variable, i. e. there exist diffeomorphisms &} : R = R such that

ht<g(fti<$1),.%'2, ceyTg)) = :I::c% + hi(g(0, 22, ..., 24))

=:g% (z1,..-,7a)

near z+. Let ¢', ¢, be the respective surgery embeddings. The belt sphere of ¢* and
the attaching sphere of ¢, are given by

1) )
(pt_(xl,xg,...,:vk_l,O,...,O):gi(f-:vl,f-’u/,(),. ,0)
NG Al 2 2
=’
ol (21,0 0,z a:d):gs(éwvl() Oé-v)
—+ 9y e ey Yy 9ty —+ 2 A B 72

and hence they intersect transversely in a single point. So there exists a disk D4~!

My such that im w?fs c D41 and im (p:{,g C Ddt_jl,a and a diffeomorphism W =
p?

tr cp'f CUtr (piﬁ_a. Since hy, 4. has no critical points the two handles are cancelled and
we get a diffeomorphism id #5 Hy: My x [0, 2] Ztr cpﬁ CUtr @iz_e, n

Note that for any handle decomposition of W there exists a Morse function » on W

such that Construction 1.5.5 yields this decomposition.

1.6 The 2-index theorem of Hatcher and Igusa

Definition 1.6.1. We define H(1V) to be the space of generalized Morse functions on .
Fori < j € {0,...,d} we denote by H; ;(W) the space of generalized Morse functions
such that non degenerate critical points have index in {3, ..., j} and As-singularities

have indexin {i,...,5 — 1}.

Let We: My ~» M, be a cobordism. In this section we will prove the following theorem.

Theorem 1.6.2. Let d > 7 and let My — W be 2-connected. Then the space Hg q4—3(W)
is path-connected. If furthermore Mo — W is 2-connected as well, the space Hs 4_3(W) is

path-connected. In particular, there exists a Morse-function without critical values of index
{d—2,d—1,d} or{0,1,2,d — 2,d — 1, d} respectively.

This follows from the parametrized handle exchange theorem. It was first proven by

Hatcher [Hat75] “in a short and elegant paper which ignores most technical details”
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[Igu88, p. 5]. A complete and rigorous proof has been given by Igusa in [Igu88]. Note
that there is an index shift: Igusa considers n + 1-dimensional cobordisms, whereas

our cobordisms are d-dimensional.

Parametrized Handle Exchange Theorem ([Igu88, p. 211, Theorem 1.1]). Let i, j,k € N

and assume that

1. (W, My) is i-connected,

2.5 2i+2,
3.i<d—k—2—min(j — 1,k —1),
4. i<d—-k—4.

Then the inclusion Hi1;(W) — H; j(W) is k-connected. There is a dual version of this:

Assume that

1. (W, M) is d — j-connected,

2. j>142,
3.d—j<d—k—2—min(j — 1,k —1),
4. d—j<d-—k—4.

Then the inclusion H; ;1 (W) — H; ;(W) is k-connected.

Proof of Theorem 1.6.2. Consider the following chain of maps

Hs3.a—3(W)

Hoq—3(W) —— Hia—3(W)

T~
Ho,a—3(W)
/

H(W) Ho,a-1(W) —— Hog—2(W)

If My — W is 2-connected and d > 7, the last three maps are 1-connected. If My — W
is 2-connected, the first three maps are 1-connected as well. The theorem follows as
H (W) is connected. O

Combining this with the work from the previous section we are able to compare

different handle decomposition with index constraints on the surgery data.

Definition 1.6.3. Let d > 7. A cobordism W = (W9, v, 1): My ~ M is called
admissible if ¢ Lo My < W is 2-connected. An admissible handle decomposition is a

handle decomposition where all surgery data ¢;: S¥i—! x D4~ — N; satisfy k; < d—3.
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Proposition 1.6.4. Let W: My ~» M be an admissible cobordism. Then any two admissible
handle decompositions of W only differ by a finite sequence of the 5 moves from Proposition
1.5.7 with the following difference:

5. Letk < d—4and let ¢ and ' be k- and (k + 1)-surgery data such that the belt sphere
of ¢ and the attaching sphere of ' intersect transversally in a single point. Then the two

handles are replaced by the identifying diffeomorphism id # ny.

Let us close this chapter by recalling the following Lemmas that make it possible
to translate restrictions on the indices in a handle decomposition into conditions on

tangential structures.

Lemma 1.6.5 ([Wal71, Theorem 3], see also [Sma62]). Let r > 0 and let d > max{r +
4,5+ 4,7+ s+ 2}. Let We: My — M be a cobordism (of not necessarily closed manifolds
M;) such that (W, My) is r-connected and (W, M) is s-connected for i = 0,1. Then there

exists a handle decomposition of W without handles of indices 0,1, ...,r,d —s,...,d —1,d.

In particular, if d > 6 and (W, M;) is 2-connected, there exists a handle decomposition of W
without handles of indices 0,1,2,d — 2,d — 1,d.

Remark 1.6.6. 1. In [Wal71] this Lemma is only stated for the case that (X, W) is
2-connected and d > 5. The proof however shows that the symmetrical statement
above is true for d > 6 because in this case there are enough middle dimensions

available.
2. This also follows from the Parametrized Handle Exchange Theorem for £ = 0.

Lemma B.4 ([Kre99, Proposition 4], [H]13, Proposition, Appendix III]). Let 6: B —
BO(d) be a tangential structure, with B of type F,. Let We: My ~» M be a 6-cobordism
and let My — B be n-connected. If n < g — 1, there exists a O-cobordism W': My ~» M,
such that (W', My) is d-connected. If My — B is also n-connected, there exists a 6-cobordism
W': Mo ~» M such that (W', M;) is n-connected for i = 0, 1. Furthermore W' is 0-bordant
to W relative to the boundary.

Remark 1.6.7. Again, this Lemma is only stated in [Kre99] and [HJ13] without the
second half. This is why we decided to give a proof in the appendix.
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1.7 The space R" (M)

In this section we introduce the space of metrics of positive scalar curvature and
explain its topology. Afterwards we will state the famous surgery theorem of Gromov-
Lawson-Schoen—Yau and its generalization of Chernysh along with a few implications

thereof.

Definition 1.7.1. We denote by R(M) to be the set of all Riemannian metrics on M.

We want to endow the set R(M) with a topology. Let us recall the definition of the
C*°-topology (cf. [Hir76, pp.34]). Let M, N be smooth manifolds. Let f: M — N be a
smooth map and let a: U — R"”, §: V — R be charts of M and N respectively. Let
K C U be compact such that f(K) C V and let ¢ > 0. We define N'(f; ¢, 9, K, ¢) to be
the set of smooth functions f’ with f'(K) C ¢ (V) such that

Hdk(wofow‘l)(m) —d’“(wof’w—l)(m)H <

forallz € K and all k¥ > 0.

Definition 1.7.2. The weak C*°-topology on C*°(M, N) is the one which has the collec-
tion of sets N'(f; ¢, 1, K, ¢) as a subbasis.

Remark 1.7.3. For M compact, the weak C*°-topology on C*°(M, N) can be character-
ized as follows: A sequence of smooth functions f, converges to a smooth function f

if for all k¥ > 0 the derivatives fék) converge point-wise to f (),

Since a Riemannian metric is a fiberwise scalar product, it can be thought of as a
section of the bundle Sym?(T*M) of symmetric bilinear forms on M. So, R(M) C
C*(M,Sym?T* M) and R(M) becomes a topological space via the subspace topology.

Let (M, g) be a Riemannian manifold. We denote by scal, € C*°(M) the scalar
curvature of g.

Definition 1.7.4. We define the space of metrics of positive scalar curvature R (M) to be
the open subspace of R(M ) which contains those metrics whose scalar curvature is

strictly positive everywhere.

Definition 1.7.5. Let M and N be compact manifolds of dimension d — 1 > 0 and let

¢: N — M be an embedding. For a metric g on IV, we define

RT(M,¢;g) :={h e RT(M): ¢"h = g}.
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For N =[], %=1 x D¥Fi and g = ghi—1 + g% we write RT (M, ¢) := RT (M, ¢; g).
Here, g, denotes the round metric and g;,, a torpedo metric®. If there is no chance of

confusion, we will omit the dimension of these metrics.

Now, let M?~! be a compact manifold and let ¢: N*~! < M be an embedding of a
compact manifold N with trivial normal bundle into M. Let gy be a metric on N such
that scal(gn + gtor) > 0.The following is the well-known Gromov-Lawson-Schoen-—
Yau surgery theorem (cf. [GL80] and [SY79]).

Theorem 1.7.6. RT (M) # 0 <= R (M, ¢; gn + gror) # 0.

Remark 1.7.7. The statement of this theorem can be strengthened to hold for a discon-
nected manifold NV where components possibly have different dimensions: Let M
be a d — 1-manifold, and let V; be closed manifolds of dimension k; — 1, let gn, be
metrics on N; such that scal(gn, + gior) > 0 and let d — k; > 3 for all i. Let further
N =[], Nix D4Fi, g .= [, gn; + gtor and let : N — M be an embedding. Then
RY(M) #0 < R*(M,¢;9) # 0.

In [GL80] Gromov-Lawson used this result to determine which simply connected
non-Spin manifolds admit a metric of positive scalar curvature. Later, the Spin-case
was solved by Stolz [Sto92].

There is the following generalization which is originally due to Chernysh [Che04b]
and has been first published by Walsh [Wal13]. A detailed exposition of Chernysh’s
proof can be found in [EF18]. Let M, N, ¢ and g as in Remark 1.7.7.

Theorem 1.7.8 (Parametrized Surgery Theorem [Che(04b, Theorem 1.1], [Wal13, Main
Theorem]). The map
R (M, ¢;9) —= R*(M)

is a weak homotopy equivalence. In particular, if M is obtained from My by a surgery along

@: Sk=L x DI=F — My of index k < d — 3 then there exists a zig-zag of maps
R¥(Mp) & RY (Mo, ) — RY(My, ) = R (M),

If furthermore k > 3, the rightmost map in this composition is also a weak equivalence and we
obtain a zig-zag of weak equivalences from R (M) to R (Mj).

®A torpedo metric on D*7* is an O(d — k)-invariant metric of positive scalar curvature that restricts to
the round metric on the boundary. For precise definitions see [Che04b], [Wall1] or [EF18].
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There is an application to cobordism theory:

Theorem 1.7.9 ([Wal13, Corollary 4.2], [EF18, Theorem 1.5]). Let d > 6, let §: B —
BO(d) be a fibration and let My, M, be §-manifolds of d — 1 such that the underlying structure
map l: M; — B is 2-connected for i = 0, 1. If My and My are 6-cobordant, then R (M) ~
RT(My).

Remark 1.7.10. The space R* (M) is homotopy equivalent to a CW-complex (see
[Pal66, Theorem 13]). By Whitehead’s theorem, a weak homotopy equivalence of
CW-complexes is an actual homotopy equivalence. Therefore we may assume that

weak homotopy equivalences of Rt (M) have actual homotopy-inverses.

Sometimes, we need to work with manifolds with boundary. Let V' be a manifold
with boundary 0V =: N and let c: N x [0,e) < V be a collar of the boundary. We
define R (V)¢ to be the space of all psc metrics on V such that c*g = h + dt? for some
h € R(N). Since scal h + dt*> = scal h, the scalar curvature of h is positive and we get
a restriction map

res: RT(V)® — RT(N)

which is a quasifibration by [Che04a, Theorem 1.1] and a Serre-fibration by [EF18,
Theorem 1.1].

Remark 1.7.11. If we would consider non-collared metrics, restricting to the boundary
would not yield a psc-metric: D3 carries a metric of positive scalar curvature and so
does every 3-dimensional subspace. Embed a full torus D? x S' in D3. This has a
psc metric but its boundary is a 2-torus which cannot admit one by the Gauss-Bonnet

theorem.

By [BERW17, Lemma 2.1] the homotopy type of R (V)¢ does not depend on ¢ and
in fact R*(V)* — C?EBH R*T(V)e == RT(V) is a weak homotopy equivalence. For
h € RT(N) we write RT(V);, :=res~!(h) and if V: My ~+ M is a cobordism, then we
write R (V) p, = res™(ho 1L hy).

As another application of the generalized surgery theorem, Walsh proved the following

in his thesis.

Lemma 1.7.12 ([Wall1l, Theorem 3.1]). Let (W, o, v1): My ~» My be a cobordism such
that ¢! is 2-connected and let go € R (My). Then, there exists a metric G € R (W)
extending g go.






Decomposition of cobordisms

2.1 Cobordism categories

Geometric cobordism theory has had a great revival in the past 2 decades, starting
with the proof of the Mumford-conjecture by Madsen—-Weiss [MWO07] and its general-
ization to higher dimensions by Galatius-Randal-Williams [GRW14]. In this section
we recall the definition of the cobordism category Cob; and we give a different model
for mo(Coby).

Definition 2.1.1 ((GRW10, Definition 3.7 ]). We define the cobordism category Cob, as

follows:

objc,,, ={M: M C R>~! is a closed (d — 1)-dimensional manifold}

morc,,, (Mo, M) = {(W,t)}

where t € Rugand W C [0,t] x R®~! is a compact d-manifold such that there exists an
e > 0with WN([0,e) x R =[0,e) x Mgand WN((t—e,t] x R®™) = (t—e,t] x M;.

Composition is given by

(W't o (W,t) = (WU W +1),t +1)
31
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where +t means the obvious shift map. We turn this into a nonunital topological
category by imposing the objects carry the discrete topology and morphism sets are

topologized via
morcon, (Mo, My) 2 || EDiffo(W)/Diff o (W) x Rsq
W]

where W runs over all diffeomorphism classes of compact collared d-cobordisms
from My to M;. Here we use the model EDiffy(W) := Emby(W, [0, 1] x R>®~!) which

denotes all embeddings of W which are fixed near the boundary.

Remark 2.1.2. This is essentially the same definition as in [GRW10] except for taking
the discrete topology on objects. This however does not affect the homotopy type of
their classifying spaces (see [ERW17b, Theorem 5.2 and p. 23]).

Definition 2.1.3. Let C be a topological category. We define 7y(C) to be the category

with objects my(obj,) and morphisms 7o (morc).
Definition 2.1.4. Let Bord, be the category given by:

obj,.q, = {M is a closed (d — 1)-dimensional manifold}

morgerd, (Mo, M1) = {(W,v0,91)}/ ~

where W is a d-dimensional manifold with boundary OW = dyW [[ 0: W, the maps
Wi OW =, M;, i = 0,1 are diffeomorphisms and (W, ¢, 1) ~ (W', 1), ]) if there
exists a diffeomorphism F': W — W’ such that ¢; = ¢} o F|s,w for i = 0, 1. Composi-

tion is given by gluing

(W/7 wéﬂ//l) o (W onﬂ/fl) = (W U(’Lb(/])_lod)l Wlu w07wi)7

where for a diffeomorphism f: 01 W =5 9 W’ we denote by W Uy W’ the manifold
obtained from W I W’ by identifying 0, W and 9y’ along f.

Remark 2.1.5. In Bord, the identity on M is given by (My x [0, 1],1d, id).
Proposition 2.1.6. The functor F: mo(Cobg) — Bordy given by [W,t] — (W,id,id) is an

equivalence of categories.

Proof. F is well-defined and faithful because (W, t) and (W', ) lie in the same com-

ponent if and only if they are diffeomorphic relative to the boundary. F is essentially
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surjective by the Whitney embedding theorem and full because there is a diffeomor-
phism (Mo x [0,1] Uy 1 W Uy, My x [0,1],id, id) =5 (W, 2o, ¥1). O

Let Diff denote the groupoid with the same objects as Bord,; and morphism spaces
given by morp;g (Mo, M) = Diff (Mo, M).

Proposition 2.1.7. The map f — (My x [0, 1],1d, f) defines a functor Diff — Bordy.

Proof. Let f € Diff(My, M) and g € Diff (M, M;). Then a diffeomorphism

(Mo x [0,2],id, g o f) —(Mo x [0,1] Uy My x [1,2],id, g)
= (Ml X [172]7id79) o (MO X [07 1]7id7 f)

is given by id /. xjo,1) U (f X id[1,9))- .

2.2 The surgery datum category

We recall the following method to construct a category. For details see [Mac71, pp. 48].

Definition 2.2.1. A graph is a tupel (O, A, 0y, 01), where O and A are sets called object
set and arrow set and 0y, 01 are maps A = O. We say that two arrows f,g € A are

composable if 9yg = 01 f.

Definition 2.2.2. Let G = (O, A, 0y, 01) be a graph. We define the category C(G) to
have elements of O as objects and morphisms of C(G) are (possibly empty) strings of

composable morphisms of A. We call C(G) the free category generated by G.

Next we recall the notion of a quotient category.

Proposition 2.2.3 ([Mac71, p. 51, Proposition 1]). 1. Let C be a small category and let
R be a binary relation, i.e.a map that assigns to each pair (a,b) of objects a subset
of morc(a,b)®. Then, there exists a category C/ R with object set obj, and a functor
Q: C — C/R (which is the identity on objects) such that

(@) If (f.f") € R(a,b) then Qf = Qf".
(b) If H: C — D is a functor such that (f, f') € R(a,b) implies Hf = H f', then
there exists a unique functor H': C/R — D such that H' o () = H.
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C/R is called the quotient category. It is unique up to equivalence of categories.

2. We call R a congruence if for every pair of objects (a,b), the set R(a,b) gives an
equivalence relation and R respects composition, i.e. if (f, f') € R(a,b) and g: a’ — a,
h:b — b, then (hfg,hf'g) € R(a’,V). If R is a congruence, then morphism sets
morc g (a,b) of C/R are given by dividing out the equivalence relation R(a,b) on

mor¢ g (a,b).

The main goal of this chapter is to give a presentation of Bordy, i.e. a graph G, a relation
R and an equivalence of categories C(G)/R =, Bord,. Let us first construct the graph
G. Objects in O are the objects of Bord, and arrows will be given by diffeomorphisms

and elementary cobordisms:

1. For every diffeomorphism f: My — M there is an arrow I; € A connecting M
and M;.

2. For every surgery datum ¢ in M there is an arrow S, € A connecting M and
M.

Next, we need to construct the relation R on C(G). Recall that for a diffeomorphism
f: M — M’ and a surgery datum ¢ in M there exists a canonical induced diffeo-
morphism f,: My, — M}, . Also, if ¢ and ¢’ are two surgery embeddings into M
with disjoint images, there is an induced obvious surgery embedding {, on M, and
(M), = (M), - Now, let R be the relation on morphism sets of C(G) generated by
the following:

1. Iig = id.

2. If f: My =, My and g: M, =, M3 are diffeomorphisms, then I, 0 Iy = Iyo.

3. Let f: My —» M and let p be a surgery embedding into My. Then Sy, 0 Iy =
Iy, 08,.

4. If f, '+ M —> M’ are isotopic, then Iy = Iy.

5. If Ac O(k) x O(d — k), then S, = Szoa.

6. If o, ¢’ are two surgery embeddings into M with disjoint images, then S, _, 0 S, =
Sgr, 0 Sp.

7. Let ¢ be a k-surgery datum in M and ¢’ a (k 4 1)-surgery datum in M, such
that the belt sphere of ¢ and the attaching sphere of ¢’ intersect transversely in a
single point. Then S,/ o S, = Iiq % ,,, where ), is the diffeomorphism described
Section 1.5, below Remark 1.5.4.
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Remark 2.2.4. For isotopic surgery embeddings ¢ and ¢’ we get a diffeotopy H of M
such that Hy = id and H; o ¢ = ¢’ by the isotopy extension theorem. Then

Sgol = SH10<,0 © IHo = SH10$0 o IHl = I(Hl)qJ © S‘P'

Definition 2.2.5. We define the surgery datum category X; tobe C(G)/Rand Q: C(G) —

X4 shall denote the projection functor.

2.3 A presentation of the cobordism category

In this section we prove that the surgery datum gives a presentation of the category

Bordg. This is the main result of this chapter.

Theorem 2.3.1. Let P: C(G) — Bordg denote the functor which is the identity on objects

and is given on morphisms by

1. For f: My — My, Iy is mapped to (Mo x [0,1],id, f) = (M; x [0,1], f~1,id)
2. For a surgery datum ¢ in M, S, is mapped to (tr (v),id,id).

Then P descends to a functor P: X4 — Bordg which is an equivalence of categories.

Proof. First we check well-definedness. By Proposition 2.2.3 it suffices to show that P

respects the relations of ;.
1. (Mp x [0,1],id, id) is the identity.

2. (Ml X [07 1]>1d7f) © (MO X [07 1]>1d>g) = (MO X [07 1] Ug My % [07 1]71d7 f)
= (Mo % [0,2],id, f o g)
and the diffeomorphism is given by the identity on M x [0, 1] and by the map
(pt) = (g7 (p).t + 1) for (p.t) € My x [0, 1]

o

3. Let ¢ be a surgery embedding into Mj and let f: My — M; be a diffeomor-
phism.

P(Iy, 08,) = (tr (¢) U (Mo), x [0,1],id, f,)
P(Sfmp o If) = ([0, 1} x My Uf tr (f o (p),id,id)

We will show that both of these are diffeomorphic to X := (My x [0, 1] U tr o Uy,
(M1) fop x [0,1],id,id). The diffeomorphism X = P(Iy, o S,) is given by
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shrinking My x [0,1] U tr ¢ to tr ¢ and by f,, x id on (Mp), x [0, 1]. Recall that
there is a canonical diffeomorphism F': tr ¢ it (f o ¢). The diffeomorphism
X = P(S¢o, o If) is given by the identity on My x [0, 1], F on tr () and by
shrinking the collar of (M) fo..

4. Let f;: My —> M bea diffeotopy. Then we get a diffeomorphism F': ([0, 1] x
Mo,id, fo) = (0,1] x Mo,id, /1) givenby F(t,z) = " o fo(x).

5. For every A € O(k) x O(d — k), ¢ o A is just a reparametrization of ¢ and
hence this does not change tr (¢) since the standard model was chosen to be
O(k) x O(d — k)-invariant (cf. Construction 1.5.1).

6. Let ¢, ¢’ be surgery embeddings into M with disjoint images and let U, U’ be
disjoint neigbourhoods of im ¢,im ¢’ in M. Let F': [0,2] x M = [0,2] x M bea
diffeomorphism such that

(@) Fljo,s)xmu@—g2xm =1d
(b) F(t,x) =(t+1,z)forl —ey >t >ecandz € U
() F(t,x)=(t—1,z)for2—ey >t >1+e andx € U’

Then, F induces a diffeomorphism F': tr (o) U tr (¢],) = tr (¢') U tr () which

is the identity on a collar of the boundary.
7. This is precisely the situation discussed below Remark 1.5.6.

Therefore there is an essentially surjective functor P: X; — Bord,. Every cobordism
admits a handle decomposition (see Construction 1.5.5) and hence this functor is full.
It remains to show that it is faithful. This follows from Proposition 1.5.7: Any two
preimages of a cobordism W under P only differ by a finite sequence of the seven

relations of Xj;. ]
Definition 2.3.2. Leta,b € {—1,0,1,...}. We define:

1. We define BordZ’b C Bordy to be the wide! subcategory defined by the following:
Moy, ga.b (Mo, M) contains those morphisms (W, 1)y, 1)1) where v LMy —» W
is a-connected and ;' : M;<W is b-connected. Here (—1)-connected shall be

the empty condition.

2. G%" to be the graph with the same object set as G’ and morphisms as follows:

For f: My =iy V' 1 we have I; € A connecting My and M; and for every surgery

! A subcategory is called wide if it contains all objects.
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embedding ¢: S*~! x D47k < M with k € [a +1,d — b — 1] we have S, € A4
connecting M and M,. Analogously to Definition 2.2.5, we define X} b=
C(G*")/R.

Note that Bordg’b is a category by the Blakers-Massey excision theorem [Die08, Theo-
rem 6.4.1].

Theorem 2.3.3. For d > 7, the functor P~42: Xd_l’Q — Bm*d;l’2 defined as in Theorem

2.3.1 is an equivalence of categories.

Proof. The proof goes along the same lines as the proof of Theorem 2.3.1. For fullness
we note that if the inclusions ¢); ' : M; < W is 2-connected respectively, there exists a
Morse function with all indices < d — 3 by Theorem 1.6.2. Faithfulness follows from

Proposition 1.6.4. O






The surgery map

Having the presentation of the category Bord, from the previous section at hand we
can now turn to the scalar curvature part of the picture. We define and analyze the
surgery map. This is our main tool for studying the action of the mapping class group

on metrics of positive scalar curvature.

3.1 Definition of the surgery map

Recall that C(G*?) is the free category corresponding to the surgery datum category
Xy . Also let hTop denote the homotopy category of spaces, i.e. the category with

spaces as objects and whose morphisms are the homotopy classes of maps.

Definition 3.1.1. We define a functor
S:C¢(G™1?) — hTop

by the following:
1. S(M) =R"(M).
2. For f: My —» Mj the morphism I is mapped to [g — f.g], where f, == (f~1)*.
39
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3. For p: S¥1 x D4k s M withk < d -3,
Sp 5 [RY(M) ——» RT (M, p) — RY (M, o) < RY(M,,)],

where the first map in this chain is the homotopy inverse to the inclusion and the
second one works as follows: For a metric § on M \ im ¢, the metric §U o, (gF~1 +

Jir") is mapped to § U (¢°P).(gh, + 95 F7).
We will abbreviate Sy := S(If) and S, == S(S,,).

Remark 3.1.2. We have S(morg(g22)(Mo, M1)) C hIso(RT (M), RT (M), i.e. S maps
morphisms in C(G*?) to (the homotopy classes of) homotopy equivalences. This

follows from the Parametrized Surgery Theorem (cf. Theorem 1.7.8).

Lemma 3.1.3. Then S induces a well-defined functor XJLQ — hTop.

Proof. For d < 2 the statement and the proof of this theorem is trivial since mor,,-1.2 is

d
generated by diffeomorphisms and it suffices to note that isotopic diffeomorphisms

induce homotopic maps. Therefore we may assume d > 3 throughout this proof.

Throughout this proof we will draw dashed arrows for maps that contain inverses of

weak homotopy equivalences (cf. Remark 1.7.10).

We need to show that the relations R from Definition 2.2.5 do not change the homotopy
class of S(a) for a € mor a2 (Mo, My). This is obvious for relations 1,2 and 4. For
relation 5 this is easy as well, because go+gior is O(k) x O(d—k)-invariant. Also, Sto,01;
and Iy, o S, give homotopic maps because of the following homotopy-commutative

diagram.

R ((Mo)g, ¢°F) ———— R ((Mo)y)

f*h B f*h (fcp)*h (fso)*h

RF(My) —— R*(My, f o p) — RE((M) fops (f 0 9)P) —— RT((M1) o)

For relation 6 let ¢, ¢’ be two surgery embeddings into M with disjoint images. Then
there are inclusions R (M, ¢) > RT (M, 1 ¢') < R (M, ¢') and performing both

surgery maps at the same time is the same as performing them one after another.
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The hardest part of this proof is to show that handle cancellation does not alter the

homotopy class of S(a). If d = 3 the only surgery data in mor,,1,> are of the form

-
S~! x D3 < M. Hence there cannot be cancelling surgeries arid we may assume
that d > 4 from now on. Let ¢, ¢’ be surgery data in M as in relation 7 and let
f:=idps # nr where . S91 = (SZ1), is the fixed diffeomorphism from Section
1.5. Note that in this case we have £ < d — 4 and d > 4. There exists an embedding of a
disk D41 = D ¢ M such thatim ¢ C D and im ¢’ C D,,. It suffices to show that the

composition

108 *
R (M, D gr) “r RF(M) =220 R (M) s R ()

is homotopic to the inclusion «: Then by the Parametrized Surgery Theorem (cf. Theo-
rem 1.7.8), the inclusion map ¢ is a weak homotopy equivalence since d > 4 and hence

S, 08, is homotopic to f.

Let g € RT(D, )y, be a metric in the component of gi,r € RT(D),,. Consider the

following diagram:

12

RFE(M\ D)y,

RT(M,D;g) RT(M, o)

2\

R+<M7D;gtor) ¢ = R+(M)

The composition of the top maps is given by gluing in g and the composition of the
lower maps is given by gluing in g;,.. These two metrics are homotopic relative to
the boundary and hence this diagram commutes up to homotopy. The bottom map
and the right-hand vertical map are weak equivalences by the Parametrized Surgery
Theorem (cf. Theorem 1.7.8) because d > 4 and k < d — 4. Hence, the inclusion map
RY(M,D;g) — R (M, ) is a weak equivalence as well. Let g, be the metric obtained
from g by cutting out . (g5~ + g *) and gluing in 2 (g, + g2~*~1). The following
diagram commutes on the nose with the non-dashed arrows and up to homotopy with

the dashed arrow:
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Il

R* (Mg, Dy; g,5)

7 2 [

'R+(M§0, (pOp) (i) R+(Ms0>

It again follows that the right-hand vertical map and the right-hand diagonal map
are weak equivalences. Note that the composition of the bottom horizontal maps is

precisely the map S,. Now let § € R* (D, ¢’),, be a metric in the component of
9o € R (Dy)g,. We get the following diagram

Il

R+(Mg0 \Dgo)go R+(Mg07Dg0;§) R+(M§07()0/)
R+(Mg0a Dchsz) ¢ — RJF(M(p)

which is homotopy commutative as § and g, are homotopic. The righthand vertical
map is a weak equivalence because d—k—1 > 3 and we deduce that R* (M, Dy; §) —
Rt (M,,¢') is a weak equivalence as well. Let g, be the metric obtained from g by
cutting out ¢’ (g5 + g% #1) and gluing in ¢'°P, (¢51 + g2=+=2). We get the analogous
homotopy-commutative diagram:

~

R (My, D3 §) —— RT((My)gr, (Dy) s G

This accumulates to the following diagram where all arrows are weak equivalences:
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R*(M)

Here, the map (1) is given by cutting out g, and gluing in §. Since these are homotopic
relative to the boundary, the inside triangle and hence the entire diagram commutes
up to homotopy. Therefore, the composition f* o S, o S, o ¢ is homotopic to the
inclusion if and only if the top row composition in this diagram is. In contrast to
[* 08,y 08, o this composition only consists of actual maps which are given as
follows: For h € RT (M \ D), we have

h'U gtor 4>hUg<p} hUgt hU@pl

|

hu f*g,

We will denote the path component of a psc metric g on M by [g] € mo(R*(M)). By
the above argument it suffices to show that [f*§./| = [gtor] € To(RT(D),). This is
implied by Lemma 3.1.4 as follows: We can assume that D C S9! is a hemisphere
and we have f* 0 Sy 0 Sy.([gior U gror]) ~ [gtor U f*Gy] by the above argument for
M = 5S4 1 and h = g, After possibly changing the coordinates of the disk D we
may assume the following: If a*: §4-1 = (§k=1 x DI=k) U (D* x §9-*-1) is the
solid torus decomposition then a* o ¢ is given by the inclusion of the first factor and
ak o' S x DI (S 5 DR U (8% x DR is also given by the inclusion
of the first factor (cf. Section 1.5). In this case we have f = ;. The metric [gior U gior] is

homotopic to the round metric by [Walll, Lemma 1.9] and we have

g 68,08 « T 3 L 3.14
[Gtor U [ ] ~ mj; 0 Sy 0 Sp([gtor U gror]) ~ M © S 0 S([g0]) R [go]

~ [gtor U gtor]-
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Also g1 = gior U [*Gy and g2 = gior U gior are both in the image of the inclusion map
RT(D)y, — RT(S%1) which is a weak equivalence and since [g1] = [g2] it follows that
[9t0r] = [f*3] € To(RT(D)g,)- o

Lemma 3.14. Let g, € R+(S41Y) be the round metric and let ay: S0 =5 (SF-1 x
DRy U (DF x S9=k=1) be the solid torus decomposition. Let ¢: S*~1 x DI=F < §4=1 gnd
let ' S% x D=1 s S be surgery data such that a¥ o @ and a¥, o o' are both given by
the inclusion of the respective first factor. Then S 0 Sy([go]) ~ Sy ([90]) = (k) «[go)-

Proof. Let gk,.. == (g5~ + g> F) U (g, + g2%1) denote the mixed torpedo metric
on(S*~1 x D4=F)y U (DF x S4=F=1). By [Walll, Lemma 1.9]) we have (a*)*gk, . ~ go

and hence

890(90) ~ SW((ak)*gfntor) = 3ip(g(ak)*l (gwljltor))
~ g(CLZ,f;)—lgakogp(gmtor’) = (al;)*gakoap(gfntor)

Now a o ¢ is given by the inclusion and hence

Sakocp(-g?]jltor) ~ (gtor + go) U (Gtor + go) ~ go + go ~ (9o + Gtor) U (9o + Gtor)

::§

on (DF x §4=k=1) U (DF x §9=k=1) = Gk x §d=k=1 — (G x DI=k=1) |y (Sk x DIk,

We can now compute

#Sp(90) ~ Sy ((a5)*G) ~ ()™ St oy (@)

~ (a];)@/* g(a’;)oga’ ((go + Gtor) U (9o + gtor))

2]

~
k+1
= (gtor +90 )U(go +gto7‘):gmtor

k) * k+1

~ (ago 4 Imtor

We have to show that (a%),* gl ~ ni.go which is equivalent to 7}, ((ak) )" ghta. ~
k

go- But 1, was chosen such that ((a%),s o ;) = a"™ and therefore

k k+1 k+1 k+1
nZ(aip)W*gm—it_or = (CL * )*gm—’I;OT ~ Yo- [

We get the following Corollary which follows immediately from Lemma 3.1.3 and
Theorem 2.3.3.
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Corollary 3.1.5. Let d > 7. Then there is a unique functor!
S: Bord;l’2 — hTop

which satisfies:

1. S(M)=R"(M)

2. S(mxra,f) = [«

3. Strpidia)(9) = Se
Corollary 3.1.6. Let W = (W, g, 11): My ~» My be an admissible cobordism. Then there is
a well defined homotopy class of a map Sy : RT(My) — R (My). If WP := (WP 4hy, 1)
is also admissible, i.e. Yy : My — W is also 2-connected, then Sy is a homotopy equivalence

and a homotopy-inverse is given by Syyop.

Remark 3.1.7. The construction from the proof of [Walll, Theorem 3.1] (cf. Lemma
1.7.12) show the following: If W = (W,id,id): My ~» M; be an admissible cobordism,
go € R (Mp) and g1 € R (M) are metrics such that Sy ([go]) ~ [g1], then there exists
ametricG € RY(W)g.q:-

3.2 Surgery invariance of S

In this section we prove the following Lemma.

Lemma 3.2.1. Let d > 7 and let My, M; be two (d — 1)-manifolds, let W = [W,id,id] €

moryg, . —1.2(Mo, M) and let : Sk=1 x DI=k+1 < Int W be an embedding with 3 < k <
d JR— JR—

d— 3. Then SW ~ SW4,~

Proof. First we note that for 3 < k£ < d — 3, W is again an admissible cobordism:
Let W° := W \ im ®. Then W° — W is (d — k)-connected and W° — Wg is (k — 1)-

connected by Lemma B.3. We have the following diagram:

(d — k)-connected (k — 1)-connected
2
1'21780 W /
[0
eq My

!By abuse of notation, we call this functor S again.
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Since 3 < k < d — 3, the inclusions M; — W° and M; — W4 are 2-connected and

hence Wy is admissible.

We first prove Lemma 3.2.1 in the case that k¥ # 3. Letc: M; x [1 —¢,1] < W be a
collar which does not intersect im ® and let v: [0,1] x D! <+ W be an embedded,
thickened path connecting M; x {1 — ¢} and im ®. Let

Wi =imc#gim ® =imcUimyUim ¢
Wi = im ¢ #4 im ®°P

Wo = W\Wl

We choose v, so that the boundaries of all of these are smooth. Then W, ~ M; v S¥~1,
Wi ~ MV Si=k W,y U W, =W and Wy U W{ = Wg. Since M7 — W and M; — Wg
are 2-connected and 4 < k < d — 3, the maps M; vV S¥~! ~ Wy < W and M; v S4F ~

W' < W are 2-connected as well.

W Wo

M; x [1-¢,1] #, im @ My x [1-,1] #, im ®°

FIGURE 3.1: Surgery on the cobordism W
Note that W; and W/ have the same boundary M| = M;#(S*~! x S%-%), namely

an == M1 II (Ml # 8(1m <I>)) = M1 II (Ml # 6(1m q>op)) == 8W{

=M

Next, we show that Wy, Wi, W| and W;? are again admissible. Becaus of W; ~
My Vv S*=tand W{ ~ M; v S4F:

- (Wh, My) is (k — 2)-connected.
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- (W1, M) is (d — k)-connected.
- (W], M) is (d — k — 1)-connected.
So, for 4 < k < d — 3 all of these are at least 2-connected and hence W;, W] and

WP are admissible’. For W, we note that W is homotopy equivalent to Wy with a
(d — k + 1)-cell attached along ®({1} x S¢=%):

Wo U DIk = (W\ (im ® Uim 7)) U Di-k+
=W\ (im ®\ D U im 5) ~ WL
————

~Dd

Therefore Wy < W is (d — k)-connected and we have the following diagram.

(d — k)-connected
Wy © w

2-connected

M - 2-connected Wy

and hence M| — W) is 2-connected, too.

So we get a decompositions into admissible cobordisms W = Wy U W; and Wy =
Wo U W7 which implies Sy = Sw, o Sw;, and Sw,, = Sy o Sw;,. In the homotopy
category hTop we have

Swa = Swy © Swiuwer °Swy
id
=i

= SW{ o ngp o 3W1 o SWO = ngPUWI’ o SW

and so it suffices show that W;* U W] is diffeomorphic to M; x I relative to the

boundary since Sy only depends on the diffeomorphism type of W (see Lemma 3.1.3

2Note that without k > 4, the cobordism W1 might not be admissible.
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and its Corollary 3.1.5). We have (see Figure 3.2)

WP U W, = ((M1 % [0,€]) #o SF1 x DHH)

U (DFx s g (M1 x 1~ e, 1)

1

Sk—1x gd—k

=~ My x [0,2¢] # ((S’H x DRy (DR x sd—’f)>

~gd
= My X [0, 1]

and these diffeomorphisms are supported on a small neighbourhood of M/ and hence

relative to the boundary. This finishes the proof for the case £ # 3.

(M; x [0,2¢]) # S9=M; x [0,1]

FIGURE 3.2: Gluing W7* to W{

For the case k = 3 we need a different argument, because 1¥; might not be admissible

in this case. Consider the map
Emb(S? x D473 M;) — Emb(S? x D2, M; x [0,2])

which is given by ¢ + ® with ®(z, (y,t)) = (¢(z,v),t) for x € S? and (y,t) € D42 C
D473 x [0, 1]. We also have a map Emb(S? x D42, M; x [0,2]) < Emb(S? x D=2, W)
given by shrinking the interval and composing with the inclusion of the collar. We will

use the following Lemma.

Lemma 3.2.2. In the present situation, the maps Emb(S? x D=3 M;) — Emb(S? x
D42 My x [0,2]) and Emb(S? x D42 M; x [0,2]) — Emb(S? x D=2 W) are both

0-connected.
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By this Lemma we may isotope the embedding ®: S? x D4=2 < W so that its image
is contained in the collar of the boundary M;. So we may assume that W = M; x [0, 2].
We abbreviate M := M;. Again by the above lemma, we can isotope ® such that
®(5% x D¥3 % {0}) € M x {1}, i.e.® is a thickening of ®|ge, pa-s3, (9} We abbreviate
¢ = P[g2, pa-3,(0}- Let us now give a diffeomorphism

(M x [0,3]UD? x D3 U (M x [3,1]UD?* x D*3) %5 (M x I) \ im ® U D® x §973.
® ®

~(MxI
Mg =(tr p)oP ( e

On (M \ im ¢) x I the diffeomorphism « shall be given by the identity. Next we take

diffeomorphisms

1, =~ 1 1
ap:im e x [0, 5] — (im ¢ x [0, 5]) \ (im 2N [0, 5])
o 1 1
ag: im @ X [5, 1] — (im ¢ X [5, 1)\ (im @ N [5, 1]).
On the D? x D 3-parts it is given by the inclusion of the lower or upper hemisphere
D? x Sif‘?‘ C D3 x S%3. This diffeomorphism is visualized in Figure 3.3. Therefore we
have S(arx1)y ~ Stryor © Stryp ~ id ~ Sirx s and the proof is finished modulo Lemma

3.2.2. O

< >

I

1L

<\ T

I
\\
\
:
,
/

FIGURE 3.3: The diffeomorphism o.



50 Surgery invariance of S

Proof of Lemma 3.2.2. We have the following diagram

4 5
Emb(S? x D=3 M) Q Emb(S? x D2, M; x [0,2]) Q) Emb(S? x D2, W)
@) ©)
Imm(S? x D43, M) Imm(S2 x D=2, W)

~ ~

Mon(T'S? & R%3, TM;) Mon(T'S? @ R*2, TW)

o~ [ad

Map(S?, Fr(TMy)) & Map(S?, Fr(TM; ® R))

Map(S?, Fr(W))

where Mon denotes the space of bundle monomorphisms. Note that the bottom-most
vertical maps are homeomorphisms because S? is stably parallelizable and the middle
ones are homotopy equivalences by the Smale-Hirsch immersion theorem (cf. [Ada93,
Section 3.9]). The map (1) is O-connected because of the Whitney embedding (cf. [Hir76,
pp- 26]) and the maps (5) and (6) are mp-bijections by Lemma A.1. It remains to show
that (2) and (3) are 0-connected. Then the map (4) is 0-connnected, too. For (2) consider

the following diagram of fibrations.

Map($2, Gly_y (R)) —— 24O 3 10(S2, GL(R))
! !
Map(S?, Fr(TMy)) Map(S?, Fr(TM; @ R))
! !
Map(S2, M) Map(S2, M)

Since d — 4 > 3, the map (2) is 0-connected. The map (3) fits in a similar diagram:

Map(5%, Gla(R)) Map(5?, Gl4(R))
| |
Map(S?, Fr(TM; ® R)) Map(S2, Fr(W))
| |
Map(S?, M) Map(S?, W)

Since My — W is 2-connected, the bottom-most map is 0-connected and hence so is

the map (3). O
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3.3 The factorization of the action map

In this section we state and prove the main theorem of this chapter and in fact the
main result of this thesis. Before we can do so let us introduce some notation. Let
§: B — BO(d) be a once-stable tangential structure. Let 9272 denote the category which
has (d — 1)-dimensional #-manifolds (M?! [) as objects and the set of morphisms
from (My, ly) to (My,1) is given by Q4((My, o), (My,11)) if the underlying structure
map ly: My — B is 2-connected and by the empty set otherwise.

Theorem 3.3.1. Let d > 7. Then there is a unique functor S QZ’Q — hTop such that

1. S(M)=R"(M),
2. S(M x 1,id, f~1) = [g =~ f*g],
3. S(tr p,id,id) = S,, for a surgery datum ¢: S*=1 x D% — M withd — k > 3.

Proof. Let V = (V,40,v1): My ~» M; be a f-cobordism. By Lemma B.4, there exists
a f-cobordism V': My ~» M in the same cobordism class such that (V’/, M) is 2-
connected. We define Sy := Sy». By definition of S it is clear that this is a functor
satisfying the three conditions. Therefore it remains to show that this is well-defined.
Let X: Vj ~» V} be a §-cobordism relative to 0V = 0V} and let X;: V; ~» V/ be relative
6-cobordisms such that (V/, M) is 2-connected for i = 0,1. We get a #-cobordism
X = XPUX UX;: VY~ Vo~ Vi ~ V], Again, by Lemma B.4, we may assume that
(X, V/) is 2-connected. So, V/ is obtained from V{ by a sequence of surgeries of index
ke {3,...,d — 2} by Lemma 1.6.5. One can order these surgeries, so that one first
performs the 3-surgeries, the 4-surgeries next and so on up to the d — 3-surgeries. By
Lemma 3.2.1 all of these do not change the homotopy class of S and we may assume
that V/ is obtained from Vj by a finite sequence of d — 2-surgeries. Reversing these
surgeries we deduce that Vj is obtained from the admissible cobordism V/ by a finite
sequence of 3-surgeries and by Lemma 3.2.1 the map gvo’ is homotopic to 3‘/1/ and
hence S is well-defined. 0

Remark 3.3.2. It follows that S: QY (Mo, My) — [RT(Mp), R (M)] is a TY(M;)-equi-
variant map with respect to the actions given by disjoint union with the mapping torus

on the left and by composition with the pullback map on the right.






Applications

In this chapter we give several applications of the main Theorem 3.3.1. We first give a
rigidity theorem for the action of the #-mapping class group on the space of psc metrics.
The first application is the obvious one: the computation of examples. In Section 4.1
we present many cases in wich the rigidity theorem applies. The second application is
also a quite canonical one: Knowledge about the action map yields knowledge about
the quotient R+ (M) /Diff (M ). In Section 4.2 we explain how certain detection results
for mo(R*(M)) descend to the observer moduli space mo(M} (M)). We also detect
new elements of 71 (M (M)) for certain manifolds M. The third application is not
such an obvious one: Using Theorem 3.3.1 we define H-space structures on R* (M) in
Section 4.3. We also show that invertible elements with respect to these structures are
intrinsic to R* (M) and all the obtained structures are in fact equivalent but not equal.
As our final application we provide a triviality and a non-triviality criterion for the
action map in Section 4.4. This leads to a full characterization of the action of Diff ™ (M)

on R (M) for simply connected Spin-manifolds of dimension 7.
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4.1 The action of I'’(M,[) on R* (M)

For the first application we consider the case M = My = M;. For a space X let

hAut(X) denote the group-like H-space of weak homotopy equivalences of X.

Corollary 4.1.1. Let d > 7 and let §: B — BO(d) be the stabilized tangential 2-type of
M1, Then there is a group homomorphism SE: Qf — mo(hAut(RT(M))) such that the

following diagram commutes:

To(M, 1) mo(hAut(R*(M)))
[f] — —— (g f*g) SEW)
\ y /
[Ty] W]

Proof. Using the isomorphism ®: Qf — QY(M, M) given by disjoint union with M x
[0, 1] (cf. Corollary 1.3.7) we define SE(W) := S(arx1 11 wiid,id)- Then

SEW L V) =Suxruw it vidid) = S((Mx[0,1] 1 V)U(Mx([1,2] IT W),id,id)

= S(Mx[1,2] 1 Viid,id) © S(Mx[0,1] I W;id,id) = SE(W) o SE(V),

so it is a homomorphism. By Theorem 3.3.1 the above diagram is commutative since
[M x I I Ty,id,id] = [M x I,id, '] (cf. Corollary 1.3.9 and Remark 1.3.10). O

Remark 4.1.2. As mentioned in Lemma 1.7.12 (see also [Wall1]), Walsh constructed
a psc metric G on an admissible self-cobordism W: M ~+ M extending a given psc
metric gp on the incoming boundary using basically the same method used here. He
showed that the homotopy class of G restricted to the outgoing boundary does not
depend on the handle presentation [Wal14, Theorem 1.3]. Therefore he obtained a map
fw € Aut(mo(R*(M))) given by [go] — [G|arx(1}]- By seperating the cobordism part
of the picture (Chapter 2) from the scalar curvature part of the picture (Chapter 3) we
upgraded this to give an actual homotopy class of a map Sy € mo(hAut(R*(M)))
inducing Walsh’s map on mo(R " (M)).

Having Corollary 4.1.1 at our disposal it is natural to look for cases it applies to. For
example, since Q?pin 20 Q?O (cf. [Tho54, Théoreme I1.16, p. 49] and Proposition

4.1.5), one obtains an immediate result for 6-manifolds:
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Corollary 4.1.3. Let M be a simply connected manifold. Then the action of Diff* (M) on
R T (M) is homotopy-trivial, i. e. for every orientation preserving diffeomorphism f of M the
pullback map f* is homotopic to the identity.

4.1.1 Cobordism classes of mapping tori

Having Corollary 4.1.1 at hand we can start the hunt for examples. In this subsection
we compute cobordism classes of mapping tori. Except for one, all of the results
here have implications to the action of the mapping class group on psc metrics. Let
us start by listing a few facts about 925© and Q:*™. For a manifold M we denote
by p;(M) € H¥(M;Z) its Pontryagin classes and by w;(M) € H'(M;Z/2) its Stiefel-
Whitney classes!. A Pontryagin- or Stiefel-Whitney-number is the integration of a

product of Pontryagin- or Stiefel-Whitney-classes against the fundamental class of M.

Proposition 4.1.4 ([Wal60, Corollary 1]). Let [T] € Q5°. If all Pontryagin-numbers of T
vanish, then T is rationally nullbordant. If furthermore all Stiefel-Whitney-numbers vanish,
then T is nullbordant.

Lemma 4.1.5 ([Wal60, Theorem 1] and [ABP67, Corollary 2.6]). Let a: Qgpin — Q50
denote the forgetful map. We have:

1. All torsion in Q5© and Q5P™ is 2-torsion.
2. 950 ® Q is concentrated in degrees divisible by 4 and o ® idg is an isomorphism.
3. ker avis concentrated in degrees d = 1,2(8) and is a finite dimensional 7 /2-vector space

there.

Proposition 4.1.6 ([Neu71]). The signature of a mapping torus vanishes.

Proof. The absolute value of the signature of a manifold X" is bounded by the 2n-th

(rational) Betti number by, (X, Q). For a mapping torus we have

bZn(Tfa @) S b2n(M7 Q) + b2n71(M> @)

because of the Wang sequence (see Lemma B.5). So for any f the absolute value of the
signature of Ty is bounded by some constant C' independent of f. But the mapping

torus construction is a homomorphism (see Corollary 1.3.9) and we get:

l—00

. L. C
|sign(Ty)| = 7 |sign(T'p)| < T 0. O

1For an introduction to characteristic classes see [Hat17, Chapter 3].
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For computations of Stiefel-Whitney-numbers we need to use Steenrod squares. Let us

recall their basic properties.

Lemma 4.1.7 ([Bre93, Chapter VI, Section 16]). For every i € N, there are natural, additive
homomorphisms Sq': H™(X;Z/2) — H""(X;Z/2) such that

1. Fora € H"(X;Z/2), we have Sq"(a) = a, Sq"(a) = a? and Sq'(a) = 0 for i > n.
2. Sq™(aUb) =Y, i, Sq’(a) USq’ (b) (Cartan Formula).

3. Sq'(w;(€)) = Yio (T wime(€) Uwje(€) (Wu Formula).

4. Sq' is the mod2-reduction of the Bockstein homomorphism for the sequence

Z-%7—17)2.
Remark 4.1.8. ad 3. For a proof, see [MT91, pp. 141].

ad 4. In [Bre93] the fourth property is not actually stated but easily deduced. It is said
that Sq' is the Bockstein homomorphism for the sequence Z/2 N /4 — Z)2.

We get a commutative diagram where the rows are exact

1
- — HM(X;Z/4) H*(X;Z/2) % HMY(X;Z/2) — -
‘ Wid ‘ mod 2
- — H¥(X;Z) HY(X;7/2) o HMYXZ) — -

which implies that 5 mod 2 = Sqt.

Proposition 4.1.9. The total Stiefel-Whitney class of CP¥ is given by w(CPF) = (1 + a)*+1,
where a is the (non-zero) second Stiefel-Whitney class of the tautological complex line bundle.
In particular, w, (CP*) = (F11)a.
Proof. By [MS74, Proof of Theorem 14.10] T’ CPFeC = 7’1”1 where 7, is the dual of the

tautological bundle over CP*. We get w(CP¥) = w(F;)**! = (1 4+ wa(y1))F L. O

Proposition 4.1.10. Let M9 be a closed, oriented manifold. Let f: M = M be an

orientation-preserving diffeomorphism.

1. Ifd # 0(4), then 2[Ty] = 0 € Q5°
2. Ifd = 0(4) and all Pontryagin-classes of M vanish, then 2[Ty] = 0 € Q5°.
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Proof. By Lemma 4.1.5, it is enough to show that T is rationally orientedly nullbor-
dant. The first statement of the Proposition is immediate from Lemma 4.1.5, so let
us assume 4|d. By Proposition 4.1.4 it suffices to show that all Pontryagin-numbers

vanish. Consider the Wang sequence (see Lemma B.5):
0 — H™(M); - H™Y(Ty) - H™ (M) — 0

The righthand map is induced by the inclusion and we have *p;(Ty) = p;(t*Ty) =
pi(M) = 0 by our assumption on M. So, all Pontryagin classes of T lie in the image
of §. But J is a boundary map and hence 6(z) U 6(y) = 0 for all z,y € H"(M).
Therefore, all mixed Pontryagin numbers vanish and the only possibly non-zero one is
(pa/a(Ty), [Ty]). But this is some nonzero multiple of the signature of 7y which is 0 by
Proposition 4.1.6. ]

Corollary 4.1.11. Let M1 be a closed, Spin-manifold. Let f: M = Mbea Spin-
diffeomorphism.

1. Ifd # 0(4), then 2[Ty] = 0 € Q3P
2. If d = 0(4) and all Pontryagin-classes of M vanish, then 2[Ty] =0 € Qgpin.

Proof. This is immediate from Proposition 4.1.5 and Proposition 4.1.10. O

Corollary 4.1.12. Let M9~! be a closed, oriented manifold with finite fundamental group G.
Let a: M — BG be the classifying map for the universal cover of M and let f: M =5 M be
an orientation preserving diffeomorphism that acts by an inner automorphism on fundamental
group. We get amap ay: Ty — BG. If 4|d let p;(M) = 0 for all i > 0. Then there exists an
n € Nsuch that 0 = n - [Ty, as] € Q3°(BG). Furthermore n divides 2 - |G)|.

Proof. Consider the Atiyah-Hirzebruch-spectral-sequence with rational coefficients:

By, = Hy(BG,9° ® Q) = 059, (BG) @ Q

Since H,(BG) is torsion for p > 1, E2, = 0 unless p = 0. If p = 0, then E}? = 25°2Q
and hence by convergence of the spectral sequence Q3°(BG)®Q = Q5° ® Q. The same
proof as in Proposition 4.1.10 applies. For the divisibility, note that for any element
x € H,(BG) satisfies |G| - z = 0. O

Remark 4.1.13. Again, the analogous result is true if one replaces SO by Spin.
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Putting further restrictions on M we get the following result, which is due to Kreck

[Kre76, Proposition 13]. For the sake of completeness we include the proof here.

Proposition 4.1.14. Let M be stably parallelizable and f: M =5 M be an orientation
preserving diffeomorphism. Then Ty is orientedly nullbordant. If furthermore f is a Spin
diffeomorphism and d # 1, 2(8), then T is Spin nullbordant.

Proof. By Proposition 4.1.4 it suffices to show that all characteristic numbers van-
ish. By the same argument as in the proof of Proposition 4.1.10, all mixed Pontrya-
gin and Stiefel-Whitney numbers vanish. It remains to consider (p;/4(Ty), [Ty]) and
(wq(Ty),[TFz/2)- The former vanishes by the same argument as in the proof of Propo-
sition 4.1.10. The latter is the mod2-reduction of the Euler number. But the Euler
number of a fibration is multiplicative and hence (w(7), [T}]z/2) = 0. The Spin-case

follows directly from Lemma 4.1.5. O

o

Proposition 4.1.15. Let k > 1 and let f: CP2k+t1 — CP?**! pe a Spin-diffeomorphism.
Then T is Spin-nullbordant.

Proof. A mapping torus of CP?**! has real dimension 4k + 3 and hence all Pontrya-
gin numbers vanish for dimension reasons. So it suffices to consider Stiefel-Whitney
numbers. Since f is orientation preserving, it must act trivially on the highest coho-
mology of CP?**1. It follows from the ring structure that f acts trivially on the entire

cohomology ring as 2k+1 is odd. From Lemma B.5 we get the following decomposition
H" (Tf) ~ g ((CPZkz-i-l ) @ Hn—l (CP2k+1 )

Therefore *: H?(Ty) — H?(CP?**!) is an isomorphism and all odd Stiefel-Whitney
classes of T lie in the image of the boundary map ¢. This implies that mixed Stiefel-
Whitney numbers may contain at most one odd Stiefel-Whitney class, as the boundary
map kills products. Now wa,, (CP?+1) = (2k;2)a which is 0 mod 2 if n is odd. Further-

more, by the Wu formula we have

wi3(Ty) = wi(Ty) Uwao(Ty) + wars(Ty) = Sa' (woar1)(T)))
= (L*)_ISql(w2(21+1)(CP%H)) =0
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since T’ is orientable. So, any possibly nonzero Stiefel-Whitney number has the form

<w4n1 (Tf> Cr Wany_y (Tf)7 [Tf]Z/2> or
(wany (Ty) - - - wany_, (Tf) - Wang41(Ty), [Trlz)2)-

However, the degree of way,, (T)---wan, ,(Tf)-wan,+1(T¢)is = 0, 1(4) but the dimension
of Ty is = 3(4). So, all Stiefel-Whitney numbers vanish and T is orientedly and even
Spin-nullbordant by Lemma 4.1.5. O

An example of a mapping torus which is not nullbordant is the following.

Proposition 4.1.16. The mapping torus T.. of the diffeomorphism c: CP?* =5 CP?* induced

by complex conjugation which is orientation-preserving is not orientedly nullbordant.

Remark 4.1.17. The complex conjugation on CP! 2 $? is homotopic to the antipodal
map and hence induces —1 on H?(CP!) «— H?(CP?*). Because of the ring structure it

is orientation preserving on CP?* but not on CP?*+1.

Proof of Proposition 4.1.16. This proof is a generalization of a math-overflow post by
Achim Krause [Kra]. For this entire proof, w; denotes the i-th Stiefel-Whitney class of
T.. We have ¢* = (—1)" on H?"(CP?*) and hence we get from Lemma B.5

H2n(TC) ~ H2n(CP2k)c* ~

7 if nis even
0 ifnisodd

Z if n is even

Z/2 if nisodd

H2n+1(TC) o~ Hzn(C]P)Qk)c*

1%

and H"(T,;Z/2) = Z/2 for 0 < n < 4k + 1. We get the Bockstein sequence

- — H"(T,7) — HY (T, 7/2) ﬁ H"W (T, 7) — H (T Z) = 7)2
| | | J
0 7.)2 72
H*" (T 7)2) = )2

J

7, = H4n+4(Tc;Z) — ..
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If n # 2(4), the map 3 = 0 because in these cases H"*!(T,,Z) is either 0 or Z. So the
integral Bockstein homomorphism 3: H"(T.,Z/2) — H"1(T,,Z) is nontrivial if and
only if n = 2(4). The same holds for Sq! and we have 0 # Sq'(ws2) = w3z by Wu’s

formula. By Cartan’s formula
Sq! (wh) = Sq' (wa) Uwh ™ 4 wo U Sq* (wh ™)

which by induction is 0 if 7 is even and equal to w ™" U wj if n is odd. This is nonzero

because Sq' is nonzero. We compute further

Sq?(wh ™t Uws) = S (wa) Uwh ™2 Uws

+ wo U SqQ(wg_2 U ws).

By induction this is 0 if n is even and equal to w} U ws if n is odd. Also, if wh ' Uws is

nonzero, it must lie in the image of ¢ for degree reasons and we get for n odd
Sq?(wht Uws) = Sq?(8(wa(CP*H)™)) = §Sq? (wa (CP)™)
which is nonzero by the same computation as for Sq'. So, for n = 2k — 1 we get

Sq2(Sq1(wgk71)) = Sq2(w§k*2 Uws) = w%kil U ws

£0

and we found a non-vanishing Stiefel-Whitney number. O

Remark 4.1.18. If k is odd, (w2(T¢) Uwar—1(T¥), [T¢]) is another nonvanishing Stiefel-
Whitney number.

Proposition 4.1.19. Let X%*, k > 3 be a stably parallelizable, simply connected, closed
manifold and let H**~1(X;7,/2) = 0 for i = 3,5. Let f: X x CP?2 —» X x CP? be an

orientation preserving diffeomorphism. Then T} is orientedly nullbordant.

Proof. Again, we only need to compute Stiefel-Whitney numbers of T';, which we again
write as w;. All cohomology in this proof will be with Z/2 coefficients. First, we note
that wy(CP?) # 0 and w4 (CP?) = wy(CP?)? # 0. Also, all Stiefel-Whitney classes of X
vanish. So, all w; except for wy and wy are in the image of §. We further have H 2(Tf) =
HY(X x CP?)« & H?(X x CP?)/" =2 H%(X x CP?)/" because X is simply connected.
Hence we get wa(Tf) = (¢*) Hwa(X x CP?)) = (¢*)~H(wq(CP?)). Again, products

in the image of § are 0 and so the only possibly nonzero Stiefel-Whitney numbers
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correspond to the classes woy 15, Way 4 3wz and way,; w3, since wi = (1*) 1wy (CP?)3? = 0.

By Wu'’s formula we have

2k +1—2
Sqt (wapti—1) = w1 Uwapyi1 + ( 1 >w2k+z’ = Wk

fori=1,3,5.If 2k > 5, wor1;—1 € im 0 and we have

—

H*43(X x CP?))
~ §(H*1(X) ® HY(CP?))

By Poincaré duality, Hurewicz’ theorem and the universal coefficient theorem it follows
that H?*~1(X) = m1(X) ® Z/2 = 0 and so all the groups on the righthand side are
0. t

The proof for the following Proposition is adapted from [KL05, Chapter 16], where
they verify the Novikov conjecture for Z". They do so by reducing the conjecture to
the problem of showing that higher signatures of certain mapping tori vanish. Let
N be a manifold and let a: N — BG be a map. The higher signature of (N, a) with

respect to some cohomology class © € H*(BG@) is defined as
sign, (N, a) == (L(N) U a*z, [N])

where L(N) is the Hirzebruch £-class of N.

Proposition 4.1.20. Let X*~*~1 be a manifold with vanishing Pontryagin classes such that
the Whitehead group Wh(m1 X ®Z™) is trivial for m € {0,...,k—1}2 Let M := X x T* and
let f: M —» M be an orientation preserving diffeomorphism that acts on 71 (T*) C 71 (M)
by an inner automorphism. We then get a map ay¢: Ty — BZF such that M — Ty & BZFis
homotopic to the projection map. Then 0 = n - [Ty, as] € Q5°(BZF) for some n € N.

’This is fulfilled for example if X is simply connected or 71 (X) = Z" (cf. [BHS64, p.63])
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Proof. Recall that for any manifold N, the class of [V, a] vanishes in Q3°(X) ® Q, if
for all classes = € H™(X;Q), the characteristic number (p;(N) U a*z, [N]) vanishes for
every multi index I = (i1, ...,%4/4). So let us now take the situation as described in the
Proposition. By the same argument as in the proof of Proposition 4.1.10, all products
of Pontryagin classes of Ty are zero and hence we only need to check characteristic
numbers of the form (p(g_n)/4(Tf) U a}x, [Ty]). But in our situation, this is precisely
a multiple of the higher signature of (7%, ay) associated to 2 and hence it suffices to

show that all higher signatures of mapping tori vanish.

Let + € H™(BZF). Then there exists a projection map p: BZ* —» BZ™ such that
x = ¢ p*uy, for some ¢ € Q and u,, a generator of H™ (BZ"™). We may assume that the
composition T™ — M — Ty 2, Bzk 25 Bz is equal to the projection map since

ay can be changed by a homotopy.

We first show that f is isotopic to a diffeomorphism that fixes {z} x T¢¥~! x X setwise for
some z € S after possibly passing to a finite covering®. We abbreviate X’ := T*~1 x X.
Without loss of generality we may assume that f fixes a point zo. We pass to the cover
R x X' and we consider the lifted diffeomorphism f: Rx X’ — Rx X’. Now, {0} x X" is
compact and there exists an integer [ > 0 such that f({0} x X’) C [~[,1] x X’. We divide
[—1,]]x X' = A_UA, where A_NA, = f({0}xX")and dA+ = {£I} x X'ITf ({0} x X").
The inclusion 4, < f([0,00) x X’) is a homotopy equivalence and so A, is an h-
cobordism. Since the Whitehead group Wh(m; X’) is trivial, there is a diffeomorphism
p: F{0} x X) x [0,1] = Ay with p’f({O}XX’)X{O} = id by the s-cobordism theorem.
This gives an isotopy p;: R x X’ — R x X’ defined by pi(z) = p(f(0,z),t) with
po(z) = (0, f(0,z)) and im p; = M x {I}. We now project down to R/2IZ and we get
a diffeomorphism f; which is the 2/-fold cover of f. The above isotopy induces an
isotopy from f| (0yx x to a diffeomorphism {0} x X' = {i} x X’ which we can further
isotope to a diffeomorphism of {0} x X'. By the isotopy extension theorem we get an
isotopy of f to a diffeomorphism f’ of (R/2IZ) x X' fixing {0} x X’ setwise.

By an inductive argument we may assume that f fixes {0} x T*=™ x X. The higher
signature of (T, as) associated to x is the (ordinary) signature of a preimage of a
regular value of p o ay ([KL05, Proposition 4.3]). Now 0 is a regular value with
(poap)™(0) = Tf|{0}mkimXX which is a mapping torus and has trivial signature by

Proposition 4.1.6. O

*Passing to a finite cover does not alter the (non-)triviality of the signature because the signature is
multiplicative under finite coverings.
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4.1.2 Examples of manifolds with trivial actions

In this subsection we are mostly gathering results which are directly implied by the
corresponding results from the previous subsection and Corollary 4.1.1. We also
note that for simply connected Spin-manifolds the map TSP (M) — mo(Diff (M) is
surjective by Proposition 1.2.8. Hence, we are able to deduce results about the action of

the group of orientation preserving diffeomorphisms Diff " (M) on RT (M) in this case.

Corollary 4.1.21. Let d > 7 and let M~ be a simply connected, closed, oriented manifold.
If d = 0(4), let all Pontryagin classes of M vanish. Let f: M = M be an orientation
preserving diffeomorphism. Then (f*)?: RT (M) — RT (M) is homotopic to the identity.

Corollary 4.1.22. Let M be a connected, closed, Spin-manifold with finite fundamental group
andlet f: M —» Mbea Spin-diffeomorphism that acts on w1 (M) by an inner automorphism.
Then (f*)™: RY(M) — R+ (M) is homotopic to the identity for some n € N. Furthermore, n
can be chosen to divide 2|71 (M)].

Corollary 4.1.23. Let d > 7 and d # 1,2(8). Let M1 be a simply connected, stably
parallelizable manifold. Then the action of Diff ™ (M) on R (M) is homotopy-trivial.

For M = S9! we get:

Corollary 4.1.24. The action of Diff ¥ (S%=1) on RT(S971) in the homotopy category factors
through a free Z/2-action if d = 1,2(8) and is trivial otherwise.

Proof. The non-triviality is a result by Hitchin [Hit74, Theorem 4.7]. O

This recovers a version of a result of Hajduk:

Proposition 4.1.25 ([Haj88, Theorem 3.6]). The action of Diff*(S%~1) on concordance

classes of psc metrics factors through a free Z/2-action if d = 1, 2(8) and is trivial otherwise.
Corollary 4.1.26. For k > 1, Diff " (CP?¥*1) acts homotopy-trivially on R+ (CP?*+1),

Corollary 4.1.27. Let X%, k > 3 be a stably parallelizable, simply connected, closed manifold
with H**~1(X;7/2) = 0 for i = 3,5. Then Diff " (X x CP2) acts homotopy-trivial on
RT(X x CP?).

Remark 4.1.28. Note that R (CP?) is nonempty and hence so is R*(CP? x X) for any
manifold X.
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For the final example we note the following: From the Atiyah-Hirzebruch spectral
sequence and Proposition 4.1.5 we deduce that Q"™ (X) ® Q — Q5°(X) ® Q is an

isomorphism.

Corollary 4.1.29. Let X9*! be a simply connected, Spin-manifold with vanishing Pon-
tryagin classes and let M = X x TF. Let f: M =5 M bea Spin-diffeomorphism
that acts on (M) by an inner automorphism. Then there exists an n € N such that
(f5)™: RY (M) — R+ (M) is homotopic to the identity.

4.2 The observer moduli space

One might be tempted to think that knowledge of the homotopy class of the action
map Diff (M) — hAut(R*(M)) leads to knowledge of the quotient R (M) /Diff (M).
The problem however is, that the action is not free, as there might exist a metric with
nontrivial isometry group. One can fix this in two ways: One replaces the quotient by
the Borel construction, i. e. by the homotopy quotient, or one restricts to a subgroup of
Diff (M) that acts freely on Rt (M) and R(M ). Under some assumptions this subgroup
will automatically consist of orientation preserving or even Spin-diffeomorphisms
which makes the results from the previous section applicable. So we pursue the latter

idea which originates from [ABO2]. Let us start by giving definitions.

Definition 4.2.1. For zp € M we define Diff,,(M) to be the subgroup of Diff (M)
consisting of all diffeomorphisms f satisfying f(z9) = x¢ and df,, = id: T, (M —
Ty M.

The following Lemma is a standard exercise in differential geometry. A proof can be
found in [BHSW10, Lemma 1.2] or in [TW15, Lemma 7.1.2].

Lemma 4.2.2. Let M be connected. Then the action of Diff,, (M) on R(M) and hence on
RT (M) is free.

Definition 4.2.3. We define the observer moduli spaces by M, (M) := R(M)/Dift;, (M)
and M (M) := R*(M)/Diff,, (M).

Since the action of Diff;, (M) is free we get a fiber bundle

Diff,, (M) — R (M) — M (M)



Chapter 4 - Applications 65

and hence a long exact sequence of homotopy groups ending in
s = (MG (M) = mo(Diffz, (M) = mo(RT(M)) — mo(ME (M) — *

Now, we need to relate Diff,, (M) to Diff?(M). Since for any f € Diff,, (M), dfs,
is the identity, we can isotope f to be the identity on a small neighbourhood U of
xo. We get an isomorphism Diff, (M) = Diff5(M \ U) to the group of diffeomor-
phisms restricting to the identity on a neighbourhood of the boundary. We also have
mo(Diffg(M \ U)) = 7 (BDiffo(M \ U)). Let [y be a f-structure on (M \ U). Analo-

gously to Definition 1.2.4 we define for a fibration:

BDiff%(M \ U) := EDiffg(M\U)  x  Bung(T(M \U) @R, 0*Uy)
Diff g (M\U)

where Buny denotes the space of bundle maps that are equal to I on the boundary.

We have the following lemma which is a special case of [GRW14, Lemma 7.16].
Lemma 4.2.4. Buny(T'(M \ U), 8*U,) ~ pt in either of two following cases:
1. M is a 2-connected Spin-manifold and B = BSpin(d).

2. M is a simply connected orientable manifold and B = BSO(d).

Proof. Let us abbreviate N := M \ U. The inclusion 0N < N is 2-connected in the first
and 1-connected in the second case. Therefore by [GRW14, Lemma 7.16] in both cases
Bunyg (TN, 6*Uy) ~ Bung(T'N,Uy) ~ pt. O
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By Corollary 4.1.1 we get a commutative diagram in both of these cases:

- = mo(Diff 4, (M)) — mo(RT(M)) — mo(MF (M) ———— 0

~

m1(BDiff 5, (M))

>~

m1(BDiffy(M \ U))

>~

71 (BDiff%(M \ U))

~

71 (BDift? (M))

2
[f] ———— [T7]

nJ

So, as soon as the map I'(M) — QY is trivial we get a bijection mo(R*(M)) —
mo(M (M)) and a surjection 71 (M (M)) — w1 (BDiffy(M \ U)). This happens for

example when d = 7, because Q¢ = 0 in both cases.

We now give two detection results for the observer moduli space. The first is obtained
by applying the above to the work of Botvinnik, Ebert and Randal-Williams [BERW17]
together with Corollary 4.1.21:

Theorem 4.2.5. Let d > 7 and let M@~ be a 2-connected Spin-manifold.

1. If d = 0(4) and all Pontryagin classes of M vanish, the space M (M) has infinitely
many path components.
2. If d # 1,2(8) and M is stably parallelizable, the map mwo(R*(M)) — mo(M (M)

is a bijection.

At the other end of the sequence we get a detection result for 71 (M, (M)) for special
manifolds M using the work of Galatius and Randal-Williams [GRW16] who computed
the fundamental group of BDifTa(Wgz”) for W;“ = (S™ x S™)#9 the high-dimensional
genus g surface. Let BO(d)(l) denote the I-connected cover of BO(d).
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Theorem 4.2.6. For g > 5, n > 3and n # 0(4) there is a surjective map m (M} (W2")) —
QS;LLI & G, where Qéﬁﬁrl denotes the BO(2n + 1)(n)-cobordism group and

(Z)2)*  ifnis even
G =10 ifn=3,7
Z]4 otherwise.

Proof. First we note that W2 is 2-connected, stably parallelizable and Spin and so by
Proposition 4.1.14 we get that any mapping torus is Spin-nullbordant (here we use
n # 0 mod 4) implying that the map w1 (M, (WZ")) — mo(Diff,, (W2")) is surjective.

Above we computed that
mo(Diff 4, (M)) = w1 (BDiffy (W™ \ D)

and by [GRW16, Theorem 1.3] that 7y (BDiff5(W7" \ D) maps surjectively to Qéﬂrl ®
Gh. O

4.3 An H-space structure on R (M)

In this section we apply Theorem 3.3.1 to construct a family of H-space multiplications
on R (M) for certain manifolds M. We will show that all of these are equivalent and

that invertible elements do not depend on the chosen multiplication.

4.3.1 Definition and easy computations

Let us first fix the situation for this section: Let

Xw d > 7, let M ! be a manifold and let : B —

BO(d) be the stabilized tangential 2-type of M.
m @ Let W: () ~ M be a -nullbordism of M.

M This gives a map Sy : R*(0) — R*(M). Note
() = o
FIGURE 4.1: The d-cobordism that R*(0) = {pt} and let eyy := Sy (pt). We also
Xw: M II M~ M. have a 6-cobordism

Xy =WPHWPHUW: MIIM ~~ M
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as in Figure 4.1. Now, Xy € Q((M LI M), M) and by Theorem 3.3.1, we get a map
pw = Sxy, : RT(M) x RY (M) — RT(M)

whose homotopy class only depends on the §-cobordism class of W.

Theorem 4.3.1. The map uyw defines a commutative and associative H-space structure on

R (M) and the neutral element is given by eyy.

Proof. First we show that ey really is the neutral element. We need to show that the

composition

id x
W, R (M) x R (M) —

RH(M R (M)

is homotopic to the identity. The first map is equal to S(js« ryiw and the composition
is given by
Sxy © S(xnuw = S(MxHUWerTWIdw ~ S(MxI)u(Mx1) ~ id

as the double of W is nullbordant by Proposition 1.3.3 (see Figure 4.2).

O
U~ L0

dW Wy WP

FIGURE 4.2: ey is the neutral element.

For commutativity, the composition sy o 7, where 7 is the map switching the factors,
has to be homotopic to y17. The map 7 however is given by the surgery map S for the
cobordism in Figure 4.3 and the composition of this cobordism with Xy is bordant to

Xy relative to the boundary (see Figure 4.3). This also implies that ey is a two-sided

EBa-EBo

FIGURE 4.3: py is commutative.

unit.

For associativity we need to show that the following diagram commutes:
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w RH(M) x RY(M) x RT (M) %
RT(M) x R (M) RT(M) x R (M)

e —
Again, all maps are given by surgery maps and the proof is finished by Figure 4.4. [

: O
Q™ .
D

FIGURE 4.4: py is associative.

Remark 4.3.2. 1. This proof shows how easy it is to work with this kind of “graphical
calculus”. It is always possible to write down the formulas, however the pictorial

computation is much more enlightening.

2. A word of warning is appropriate here: Using pictures to do computations can
be dangerous as illustrated by the following example: consider the cobordism
X=wernwelnowilnw: MII M ~ MII M (see Figure 4.5).

O O
O @

FIGURE 4.5

We then have two ways to decompose X: (WP II W)L (WP W) = X =
Xw II W. One might be tempted to think that then (uw,e) ~ Sx,uw ~
Swerttwyiwernw) ~ (id,id) implying that R* (M) is contractible. However,
this computation is however wrong, as one needs to consider the tangential
2-type of the outgoing boundary which is not connected in this case. Sx is

obtained by making the structure map of X 2-connected and requiring that the
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structure map restricts to the one on the boundaries. Since both boundaries are
the same (as #-manifolds), we deduce that the inclusion of both the incoming
and the outgoing boundary are both 2-connected. So, the obtained cobordism
X must have two components with one incoming and one outgoing boundary
each. Hence, Sx # Sx,,niw ~ (uw,e). However: If the outgoing boundary is
connected, so is its tangential 2-type #: B — BO(d) and one does not have to

worry about path components of the cobordism.
Corollary 4.3.3. mo(R " (M)) is an abelian monoid and 71 (R (M), ew ) is an abelian groups.

Example 4.3.4. By going through the definition of S we deduce that for the case
M =S8%land W = D = D we have ep = ¢~

4.3.2 Dependence on W

Let us analyze how this H-space structure depends on the nullbordism W: §) ~~ M
next. From now on the symbol “=" will denote equality in the homotopy category, i.e.

f = f' means f and f’ are homotopic.

Lemma 4.3.5. Let U: M ~ M be a 6-cobordism and let Syy: RT (M) — R (M) be the

corresponding homotopy equivalence. Then
puw o (Su,id) = pw(id, Sy) = Sy o pw .
Proof. Since W°P I1 W is bordant to M x I, this lemma follows from Figure 4.6. ]

Let us give an immediate application.

Corollary 4.3.6. Let G C mo(R ™ (M)) be the group of invertible elements with respect to pyy .
Then for any 6-cobordism U : M ~» M we have Sy (G) = G.

Proof. Let g,¢g' € G such that uw(g,9’) = ew and let ¢ € mo(R*(M)) such that
Su(g") = ¢'. Then by Lemma 4.3.5

nw (Su(9),9") = pw (g, Su(g")) = pwig, g') = e.

So, Sy(g) is a unit and Sy (G) C G. The other inclusion follows analogously: g =
Su(S;'(9)) = Su(Syer(g)) and by the above computation, Syer (G) C G. O
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=00 . OQEI0
DT OD
e O
~ RO D ~R D
OO0
BluEo

FIGURE 4.6

Now, let us analyze the dependence of this H-space structure on W: () ~» M. Let
V: 0 ~ M be another #-nullbordism. We get a §-cobordism WP I V: M ~~ M and a

corresponding surgery map f = Syor11v -
Theorem 4.3.7.

1. Themap f: (RT (M), pw) — (R (M), pv) is an equivalence of H-spaces.
2. We have pyw = f o uy and ey = f(ew).
3. If Gw, Gy C mo(R+(M)) denotes the respective set of units, we have Gy = Gy .

Proof. 1. By Corollary 3.1.6 we have Syopriiw o Swoerri ~ id and so f is a homotopy
equivalence. For the homomorphism property we have the following computa-

tion:

D 2 i QOO
S 00 O~5 g5 @

FIGURE 4.7: f is a homomorphism
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2. The first part follows from Figure 4.8

00 O
D@D@ C X

FIGURE 4.8

and the second part is handled by Figure 4.9.

OO

FIGURE 4.9

3. For symmetry reasons it suffices to show that every py/-unit is a p/-unit. So, let
g € Gw. Then f(g) € Gy because f isa homomorphism and because f(ew) = ey
and by Corollary 4.3.6 we have f(g) € Gy <= g € Gy. O

The same proof also shows that this H-space structure is also independent of M:
Let M’ be another (d — 1)-manifold with the same stabilized tangential 2-type. If
V: (0~ M'is a #-nullbordism, then the map Syoprry: (R (M), uw) — (R (M), uy)

is an equivalence of H-spaces.

4.4 Triviality and non-triviality criteria for the action map

In Subsection 4.1.2 we showed that for certain manifolds the mapping class group acts
trivially on the space of psc-metrics in the homotopy category. All those manifolds had
the property that every mapping torus was (rationally) nullbordant, no facts about the
diffeomorphism itself were needed there. In this section we first give criteria for the
action map to be trivial or nontrivial which have less restrictions on the manifolds they
apply to but require more knowledge about the action. The first one is a criterion for the
action map to be trivial which is proven using the H-space structure from the previous
section. Afterwards we derive a non-triviality criterion by an argument in the style of
[Car88] (cf. [Walll, Example 1.1]). As an application we get a full characterization for
the action of Diff " (M) on R* (M) for simply connected spin-7-manifolds.

Theorem 4.4.1. Let d > 7 and let M~ be a simply connected Spin-manifold which is
Spin-nullbordant. Let A% be a closed Spin-manifold. Then SE(A) = Syrxrm a: RT (M) —



Chapter 4 - Applications 73

RT (M) is homotopic to the identity if and only if Sga—1y; 11 4(go) and g, are homotopic in
RH(S971).

Remark 4.4.2. In particular, for [¢)] = [f, L] € I'SP"(M) the map f*: RT(M) — R (M)
is homotopic to the identity if Sgi-1,7 11 7, (90) ~ go-

Proof of Theorem 4.4.1. Let W: § ~ M and let D: ) ~ S%~! denote the standard d-
disc. By Theorem 4.3.7 the map f = Spor 1 w: (R (S 1), up) — (RT(M), uw) is
an equivalence of H-spaces. By Example 4.3.4 the neutral element ep is given by the

round metric g, and f(go) ~ f(ep) ~ ew by Theorem 4.3.7. We compute

SEA(L) =Smxrna=pw(Svuxruall),ew) = pw (o, Smuxru alew))

= puw (- Smuxrmao f(go)) = pw (s foSga-1y711 a(90)),

where the last equality follows from the Figure 4.10.

Mx[01] S‘“x[Ol]

FIGURE 4.10

Now, pw (-, f o Sga-1711 4(90)) = id if and only if f o Sga-1,7 11 4(go) ~ ew which
happens if and only if Sga-1,7 11 4(90) ~ go. O

Next we give the non-triviality criterion.

Proposition 4.4.3. Let M be a (d — 1)-dimensional, simply connected Spin-manifold and let
W be a closed Spin-manifold with fL(W) # 0. Then S&w (g) g for every psc-metric g on
M. In particular, SEw is not homotopic to the identity.

Proof. By Lemma B.4 we can perform (Spin-)surgery on M x [0,1] IT W to get an
admissible cobordism V': M ~» M. If S&y is homotopic to the identity there exists a
psc-metric G on V that restricts to the same metric gy on both boundaries by Lemma

1.7.12 (see Remark 3.1.7 as well). We obtain a psc-metric on the manifold V' obtained
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~

by gluing the boundaries of V' together along the identity. So, A(V’) = 0 by the

Lichnerowicz-formula and since A is Spin-cobordism invariant we get

0=AV') =AM x S'ILW) = A(W). O

We can now derive the result for 7-manifolds.

Corollary 4.4.4. Let M7 be a simply connected Spin-manifold and let f: M =y Mbea
Spin-diffeomorphism. Then the following are equivalent:

1. A(Ty) = 0.

N

. T is Spin nullbordant.

w

. [* is homotopic to the identity.

H

. f*g ~ g forevery g € RT(M).

5. There exists a metric g € R (M) such that f*g ~ g.

Proof. The implications 3. = 4. and 4. = 5. are obvious and the implication 2. = 3
follows from Corollary 4.1.1. For 1. = 2. we note that

OP" = Z e Z = ([HPY), [8),

where 8 denotes the Bott manifold with A(3) = 1 and sign(8) = 0. Furthermore,
sign(HP?) # 0 and A(HP?) = 0. Since for T both these invariants vanish, it has to be
Spin-nullbordant. Finally 5. = 1. is proven as follows: Let g; be an isotopy between
f*g and g. Since isotopy of psc metrics implies concordance of psc metrics, there exists
a psc metric G on M x [0, 1] restricting to f*¢g and ¢g. Then G induces a psc metric on

Ty as one can identify the metrics on the boundary along f* and hence A(Ty) = 0. [

Remark 4.4.5. 1. Since M is simply connected we have DiffSP" (M) — Diff™(M).
Hence the above Corollary classifies the action of I'" (M) on R* (M) for every

simply connected 7-dimensional Spin-manifold.

2. Note that the implication 5. = 1. does not require the restriction to dimension 7.
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In the 7-dimensional case we get a further factorization of the action map:

rSpin( 77, 1) mo(hAut(R*(M)))

) / SE(B)
AoT /

This factorization is sharp in the sense that ker 7 = ker.A o T. We close this chapter

with 2 questions:

Question 4.4.6. Let M be simply connected and spin. Is vanishing of the A-genus of
W a sufficient condition for S& to be homotopic to the identity on R*(M)?

If the answer to Question 4.4.6 were yes, we get the following commutative extension

of the diagram above.

I'SPin (M, 1) mo(hAut(R™(M)))

N

Spin
Qd

>O

~(pt)

In the 7-dimensional case, this would be implied by the following conjecture.

Conjecture 4.4.7. SE(HP?) ~ id.
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The motivation for the second question is the fact that the kernel of the signature ho-
momorphism sign: Q5© — Z is generated by mapping tori, i.e. for every W € kersign
there exists an oriented manifold M¢~! and an orientation preserving diffeomorphism
f € Diff " (M) such that [Ty] = [W] € Q5° (cf. [Win71]). We consider the group
homomorphisms

Q5P S0 ¥

and we ask the following question.

Question 4.4.8. Which elements W € ker sign with nontrivial fl—genus are in the image
of the homomorphism Qipin — 059, i. e. can be represented by the mapping torus of

a Spin-diffeomorphism on a Spin-manifold?

If M were a simply connected Spin-manifold of positive scalar curvature with a Spin-
diffeomorphism ( f, L) whose mapping torus has non-vanishing fl—genus, we would
get a detection result for every curvature condition that implies positive scalar curva-

ture by Proposition 4.4.3.



Surgery stable curvature conditions

In this chapter we generalize our main result to other curvature conditions. The key
observation is that the two main (differential) geometric ingredients that go into the
proof are: The surgery theorem (1.7.8) by Chernysh [Che(04b, Theorem 1] and [Wall1,
Lemma 1.9] which says that double torpedo metrics and mixed torpedo metrics on
the sphere lie in the component of the round metric. We call this second property the
mixed torpedo condition. Recent work of Kordass [Kor18] improves Chernysh’s result
from positive scalar curvature to other curvature conditions!. Afterwards we use
this improved surgery theorem to indicate how one can upgrade a detection result of
Botvinnik-Ebert-Randal-Williams [BERW17].

5.1 The improved surgery theorem

Let us fix ¢ > 3 and let C be a deformable, codimension c surgery stable curvature condition
of dimension (d — 1).2 We denote by R¢ (M) the space of Riemannian metrics satisfying

C. Note that saying a metric satisfies C' only makes sense for metrics on manifolds

!This is built on work of Hoelzel [Hoe16] in the same way Chernysh'’s result [Che04b] is built on
Gromov-Lawson'’s surgery theorem [GL80].
For a definition and examples see [Kor18, Section 2.1] and [Hoel6, Introduction].

77
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of dimension (d — 1). The round metric g¥~! of radius 1 satisfies ¢¥~! + geues €

R (SF~1 x RY7F) for e small enough and k > ¢ (cf. [Kor18, Remark 2.8]) and for every
for” € R(D"¥)g, such

that gx + gior € Ro(N x DF) gn+go Provided that d — k > 3 (cf. [Kor18, Corollary 2.27]).
We define

metric gy on a manifold N*~! there exists a torpedo metric g

Re(M,¢) ={g € Re(M): ¢"g = go + gtor}
The following is the improved parametrized surgery theorem.

Theorem 5.1.1 ([Kor18, Theorem 3.5]). Let C be a deformable, codimension c surgery stable
curvature condition, M be a (d — 1)-manifold and let p: S*=1 x D4=F — M be a surgery

datum with k < d — c. Then the inclusion
Re(M, ) = Ro(M)

is a (weak) homotopy equivalence.

Example 5.1.2. Let us list some curvature conditions to which Theorem 5.1.1 applies.

1. Positive scalar curvature is a deformable, codimension 3 surgery stable curvature
condition, so Kordass’ result really is a generalization of Chernysh’s theorem.

2. Let (M, g) be a Riemannian manifold and let P C T,M be a p-dimensional
subspace with (E;) an orthonormal basis of P+. We define the p-curvature of g
by s,(9)(P) = Y_i; 2, secy({Ei, Ej)).> Then positive p-curvature is a deformable,
codimension p + 3-surgery stable curvature condition (see [Lab97] and [Kor18,
Example 2.20]).

3. In a similar fashion, one can define ¢-Ricci curvature. Let Q C T, M be a ¢-
dimensional subspace with (E;) as an orthonormal basis. We define the ¢-Ricci-
curvature of g by Ricy(9)(Q) = >.¢_, Ric(g)(E;).* Then, for 2 < ¢ < d -2,
positive g-Ricci curvature is a deformable, codimension (d — g + 1)-surgery stable
curvature condition (see [Wol12] and [Kor18, Example 2.20]).

All these examples are contained in positive scalar curvature, so for all these conditions

one has R¢ (M) C Rpse(M) = R (M).

It is not clear if deformable, codimension ¢ surgery stable curvature conditions also

encode the mixed torpedo condition, i. e. that every metric satisfying C' also satisfies the

3Clearly, O-curvature is scalar curvature and (d — 2)-curvature is the sectional curvature. We also see
that s1(g)(P) = scalg — 2Ric(P).
*(d — 1)-Ricci-curvature is scalar curvature and 1-Ricci curvature is ordinary Ricci curvature.



Chapter 5 - Surgery stable curvature conditions 79

mixed torpedo condition. For the above examples it should be true and we will assume

it for the succeeding section.

5.2 Generalization of Theorem 3.3.1

In this section we generalize our main Theorem 3.3.1. All our results carry over
without any change in the proofs. However, the dimension restriction changes. Let
m = max{c+ 4, 2c}.

Remark 5.2.1. With the same proof as in Theorem 1.6.2 one can show the following:
Leta,b € {—1,0,...,d}, W be of dimension at least d > max{a + 5,0+ 5,a + b+ 2}
and let the inclusions (W, My) and (W, M;) be a- and b-connected, respectively. Then
Hat1,d—b—1(W) is path-connected.

Theorem 5.2.2 (cf. Theorem 2.3.3). For d > m(c), the functor P~1¢~1 is an equivalence of

categories.

From now on let ¢ > 3 and let us fix be a deformable codimension c surgery stable

curvature condition C' that encodes the mixed torpedo condition.

Lemma 5.2.3 (cf. Definition 3.1.1, Lemma 3.1.3 and Corollary 3.1.5). Let d > m(c). Then
there is a functor
S¢. Bord;1’0_1 — hTop

which satisfies:

1. SE(M) = R+(M)

—c
2. Stvxria,f) = J«

—=C c
3. Strcp,id,id(g) = S(p‘
Lemma 5.2.4 (cf. Lemma 3.2.1). Let d > 2¢ + 1 and let My, M be two (d — 1)-manifolds,
let W = [W,id, id] € mor,_ 1.1 (Mo, My) and let ®: S*~1 x DI=F+1 — Int W be an
d

embedding with ¢ < k < d — c. Then EI?V ~ Sﬁ,@.

Now, let : B — BO(d) be a fibration which is once-stable. Let thc_l denote the
category which has (d — 1)-dimensional §-manifolds (M9, 1) as objects and let the
set of morphisms from M to M; be given by QY (M, M) if the underlying structure

map [: My — Bis (¢ — 1)-connected and be empty otherwise.
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Theorem 5.2.5 (cf. Theorem 3.3.1). Let d > 2c + 1. Then there is a unique functor
S¢: QZ’C_I — hTop

such that

1. S¢(M) = Rc(M),
2. SYM x I,id, f~1) = [g — f*g],
=C

3. 89 (tr¢,id,id) = S,.

Remark 5.2.6. One can possibly improve the dimension restriction from d > 2¢ + 1 to
d > m(c). The 2-index theorem only requires d > m(c) but for the use of Lemma A.1
in the proof of Lemma 5.2.4 (cf. Lemma 3.2.1) one needs d > 2c + 1. It is possible that
Lemma A.1 also holds for one dimension smaller (cf. Remark A.2.4). This would mean
that the restriction becomes d > 7 for ¢ = 3 and d > 2c¢ for ¢ > 4.

Corollary 5.2.7 (cf. Corollary 4.1.1). Let d > 2c + 1 and let : B — BO(d) be the
stabilized tangential (c — 1)-type of M9~L. Then there is a group homomorphism SE€: QY —
mo(hAut(Re(M))) such that the following diagram commutes:

To(M, mo(hAut(Rc(M)))
fl— " —"—9~ f" SEC(W)
\ y /

[Ty] V]

Some of the examples computed in Section 4.1 have analogues for other deformable
codimension ¢ surgery stable curvature conditions. Let Qélm denote the cobordism

group of d-dimensional BO(k)-manifolds. The key observation is the following;:

Proposition 5.2.8. The forgetful map di ®Q — Qéll) ® Q = Q50 ® Q is injective for
every k > 2.

Proof. In this proof H,,(X) denotes the rational homology of X. By [KL05, Theorem 2.1]
there is an isomorphism ol g Q= H,(BO(k)). We show that the map BO(l) —

BO(l—1) induces a monomorphism in rational homology for 2 < ! < k. The homotopy
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groups of BO are given by

Z ifi =0(4)
m(BO) =< 7/22 ifi=1,2(8)

0 otherwise.
So, BO(l) = BO(l — 1) for | = 3,5,6,7(8) and we get fibrations

BO{4m) — BO(4m — 1) — K(Z,4m)
BO(8m+e) — BO8m+e—1) — K(Z/2Z,8m + ¢)

for e = 1, 2. The rational cohomology of K (Z/27Z,8m + ) vanishes. The base space
of these fibrations is simply connected by our assumption on / and so by the Leray-
Serre spectral sequence the map BO(l) — BO(l — 1) induces an isomorphism in
rational homology unless | = 4m. If | = 4m this spectral sequence gives E> =
H,(K(Z,4m)) ® Hy(BO{4m)) = Hp.,(BO(4m — 1)). The entries on the E2-page are
zero if either p or ¢ is not divisible by 4. Therefore every differential of the spectral
sequence is trivial and the spectral sequence collapses at the E?-page. We therefore

have

H,(BO@m)) = @ Hy(K(Z,4m)) @ Hy(BO(4m)) —» H,(BO(4m —1)) O
ptg=n

Example 5.2.9. For ¢ = 3,4, we have BO(d){(c — 1) = BSpin(d) and for 5 < ¢ < §,
BO(d)(c — 1) = BString(d).

We can now state analogues for two examples from Section 4.1.

Corollary 5.2.10. Let d > 2c+ 1 and let M~" be a ¢ — 2-connected BO(d)(c — 1) manifold.
If d = 0(4) let all Pontryagin classes of M wvanish. Let f: M = M be an orientation
preserving diffeomorphism. Then (f*)": Rc (M) — R (M) is homotopic to the identity for

somen € N.

Corollary 5.2.11. Let d > 2c¢ + 1 and let M~" be a BO(d){c — 1) manifold with finite
fundamental group and ¢ — 2-connected universal cover. If d = 0(4) let all Pontryagin classes
of M vanish. Let f: M = Mbea BO(d)(c — 1)-diffeomorphism acting on the fundamental

group by an inner automorphism. Then (f*)"™ is homotopic to the identity for some n € N.
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For ¢ = 3,4 we have BO(d)(c — 1) = BSpin(d) and even more results from Chapter 4
carry over. If ¢ = 3 this works for all results and if ¢ = 4 one has to consider 2-connected

manifolds instead of simply connected manifolds.

5.3 A detection result for R(M)

In this section we use Kordass” Theorem 5.1.1 to indicate how one can generalize the
work of Botvinnik, Ebert and Randal-Williams [BERW17]. Letc € {3,...,d — 3} and
let C be a deformable, codimension ¢ surgery stable curvature condition that implies
positive scalar curvature. Also, let t: Re(M) — R*(M) denote the inclusion. The

following Lemma states the existence of stable metrics in a special case.

Lemma 5.3.1 ([BERW17, Theorem 2.6]). Let d > 2c and let V¢=1: 892 s S92 pe g
(¢ — 2)-connected, BO(d)(c — 1)-cobordism. Also, assume that V is BO(d)(c — 1)-cobordant
to S92 x [0, 1] relative to the boundary. Then there exists a metric g € Rc(V )y, g, with
the following property: If W : S=2 ~ §9=2 is cobordism and h € R(S9~?2) is a boundary
condition such that h + dt> € Ro (S92 x [0, 1)) then the two gluing maps

(5 9): ReW)hgy — Re(W UV )pg,
(g, ) Re(W)gon — Re(VUW)g, n

are homotopy equivalences.

Proof. By assumption there exists a relative BO(d){c — 1)-cobordism X : V ~» 972 x
[0,1] and by performing surgery on the interior of X we may assume X has no
handles of indices 0,...,¢ — 1,d — ¢+ 1,...,d (cf. Lemma B.4 and Lemma 1.6.5).
So S92 x [0, 1] is obtained from V by a sequences of surgeries with these indices.
Let ¢: S¥=! x D?* — V be such a surgery embedding with k € {c,...,d — ¢} and
let g € Re(V)g,go and let ¢’ € [gg(g)} € mo(Rc(V,)). The map Sg is a homotopy
equivalence and so gluing on the metric g is a homotopy equivalence if and only if

gluing on ¢’ is a homotopy equivalence.

Now gluing in (S92 x [0, 1]), go + dt?) is a homotopy equivalence and so by the above

argument there exists a metric g € R¢(V)g, g, as required. ]
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Let M?~! be a manifold with boundary M and let h € R(9M) such that h + dt? €
Rc(OM x [0,1]). The space Rc (M), has an action of Diff5(M), the group of diffeo-
morphisms which are the identity on a neighbourhood of M. We get an action map
n%: Diffs(M) — hAut(Rc(M)) which induces

To(M) = mo(Diffg(M)) — mo(hAut(Re(M)p)) (5.1)

The psc-analog of the following is one of the main ingredients in the proof of [BERW17,
Theorem B].

Theorem 5.3.2 ((BERW17, Theorem 4.1]). Let d > 2c and let M*~ bea (c — 2)-connected,
BO(d)(c — 1)-manifold with boundary OM = S?=2. Also, assume that M is BO(d){c — 1)-
cobordant to D~ relative to the boundary. Then the image of the map (5.1) for h = g3=2 is

an abelian group.

For the proof we will use the following Lemma of Eckmann-Hilton style.

Lemma 5.3.3 ((BERW17, Lemma 4.2]). Let C be a nonunital topological category with objects
the integers and let G be a topological group which acts on C, i.e. G acts on all morphism spaces
and the composition in C is G-equivariant. We will denote the composition of x and y by x - y.

Suppose that

1. C(m,n) =0 forn < m.

2. For each m # O there exists a u,, € C(m, m + 1) such that the composition maps

U, - - C(m+1,n) = C(m,n) forn>m+1

U C(nym) — C(n,m+ 1) forn <m

are homotopy equivalences.

3. There exists an x¢ € C(0, 1) such that the composition maps

xo--:C(1,n) = C(0,n) forn >1
_-x9: C(n,0) = C(n,1) forn <0

are homotopy equivalences.

4. The G-action is trivial unless m < Qand 1 < n.

Then for f,g € G the maps f,g: C(0,1) — C(0, 1) commute up to homotopy.
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Proof of Theorem 5.3.2. This is completely analogous to [BERW17, Proof of Theorem
4.1]. Consider a closed disk D C S%2 x (0,1). By Theorem 5.1.1 there exists a
metric h € Re (S92 x [0, 1], D; gfo_rl)gg_zggq which is isotopic to the product metric
9472 + dt? relative to the boundary. By cutting out this disk we obtain a metric h on
T = (S92 x [0,1]) \ int(D) that satisfies C. We denote by P = S92 the boundary

component created by cutting out this disk. We get the composition
1y Hgtop
Reo(M)g, — Ro(M Ugd—2x {0} T)go.9o - Ro(M Uga—2x 10} T Up D)y,

given by gluing in (T, h) and (D, g1or). The composition is given by gluing in &
which is homotopic to gluing in g, + dt? and so it is a homotopy equivalence. The
right-most map is a homotopy equivalence by Theorem 5.1.1 and so p;; also is a
homotopy equivalence. Let V' := M Uga-2, 0 1" and let us consider this as a cobordism
S92 = P s 8972 5 {1} = 8472,

We now apply Lemma 5.3.3 to the following scenario: Let G := Diff5(M) and let
C(0,1) = R¢c(V)go,g.- Furthermore, let

Re(S972 x [m, 00UV U S2 x [0,n]),, 4, form<0,n>1
C(m,n) = § Rc(S2 x [m,n])g. g form<n<Oorn>m>1

0

Let G act on C(m,n) by extending a diffeomorphism f € Diff5(M) by the identity and
then acting via pullback, i. e. G acts on M via pullback and trivially everywhere else.
With this action the composition given by gluing metrics is obviously G-equivariant.
For m # 0 let u, == g3=2 4+ dt?> € C(m,m + 1) and by Lemma 5.3.1 there exists an
xg € C(0,1) such that the hypothesis of Lemma 5.3.3 is satisfied and so the action
of Diff3(M) on Rc(V)g,.4. factors through an abelian group. The Theorem follows
because the gluing map p5: Ro(M)g, = Rco(V)ge.g. is @ Diff (M )-equivariant homo-

topy equivalence. O

Remark 5.3.4. This can also be proven by using a version of Corollary 4.1.1 for manifolds
with boundary and using Lemma 4.2.4 as in Section 4.2. This comes at the price of

requiring that M is (¢ — 1)-connected and that C' encodes the mixed torpedo condition.

We will now give an outline how one can possibly generalize the detection result from
[BERW17]. Let #: BO(d — 1){c — 1) — BO(d — 1) be the (¢ — 1)-connected cover. Let
Wy be a manifold of dimension d — 1 = 2n > 2¢ which is BO(c — 1)-cobordant to D"
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and that satisfies that the structure map I: Wy — BO(d — 1)(c — 1) is ¢ — 1-connected.
Using Theorem 5.3.2 one can construct a map p: QT MTO — R (W) in the same
way as in [BERW17, Chapter 4]. For ¢ = 3,4 we have BO(d)(c — 1) = BSpin(d) and
one should be able to adjust the index theoretic arguments from [BERW17, Chapter 3]

to show that the composition

p inddiff
QOO'HMTSpin(d —1) —— Re(M), ——— RT (M),

Qoo+dKO

where is weakly homotopic to the loop map of A4_;. Employing a propagation theorem
in the style of [BERW17, Proposition 3.18] this can then be upgraded to hold for all

Spin-manifolds of dimension 2n.

Furthermore, if C is stable, it is possible to define a restriction map res: Rg(W) —
Rc (M) for a manifold W with boundary M. It has been told to us by J.B. Kordaf$ that
this is a Serre-fibration as well and so the above should imply a corresponding result
for odd-dimensional manifolds of dimension at least 2¢ + 1 (cf. [BERW17, Section
3.6]). Therefore one should get the same detection results as in [BERW17] for positive
(d — 2)-Ricci curvature on manifolds of dimension at least 6. If one considers manifolds
of dimension at least 8, one should obtain these results for positive 1-curvature and

positive (d — 3)-Ricci curvature, too.

It is however unclear if the map inddiff;, o p can also be used to detect families of
metrics satisfying a deformable codimension ¢ surgery stable curvature condition if
c > 5.






Multijet-transversality

In this chapter we will give a proof of the following two lemmas using Multijet-

transversality.

Lemma A.1. Let W9, d > 2k + 1 be a manifold and let V. C W be a codimension 0
submanifold such that (W, V) is (k — 1)-connected. Then Emb(S*~1 x Di-*+1 ) —

Imm(S*~1 x DI=k+1 W) is a mo-bijection.

Lemma A.2. Let ho, hy: W® — [0, 1] be Morse functions. Then there exists a generic path of

generalized Morse functions connecting them.

A.1 Jetbundles
In this section we recall the notion of jet bundles and jet transversality. This is a recollec-
tion from [GG73].

Definition A.1.1 ([GG73, pp. 37]). Let M, N be smooth manifolds, p € M and let
f,9: M — N be smooth maps with f(p) = g(p). We say

1. f has first order contact with g at p if d f, = dg, as mappings T, M — T, N.

87
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2. f has k-th order contact with g at p if df has (k — 1)st order contact with dg at
every point in 7, M. This shall be written as f ~j, g at p.

3. We denote by J*(M, N), , the equivalence classes of maps f: M — N satisfying
f(p) = q under the relation f ~y g at p.

4. We define

JEMN) = ) JHM N,
(p,g)EM XN
An element of J*(M, N) is called a k-jet (of mappings) from M to N.

5. Leto € J¥(M, N). Then there exist (p, ¢) € M x N such that o € J*(M, N),,. We
call p the source and g the target of . We define the source map o:: J*(M,N) — M
and target map 3: J¥(M,N) — N.

6. For f: M — N we denote by j*f: M — J¥(M, N) the map that sends p to the
equivalence class of f in J*(M, N),, F(p)-

Definition A.1.2 ((GG73, Definition 4.1]). Let M, N be smooth manifolds and f: M —
N smooth. Let X be a submanifold of N and p € M. We say that f intersects X
transversely at p (denoted by f M X at p) if either f(p) € X or f(p) € X and Ty,) N =
Ty X +dfp(T,M). If A C M, f is defined to intersect X transversely on A (denoted by
fmXonA)if fh Xatallp € A. If A = M we simply write f h X.

Theorem A.1.3 (|GG73, Theorem 4.4]). Let M, N, X, f as above and assume that f th X.
Then f~1(X) is a submanifold of M and codim f~1(X) = codim (X). In particular, if
codim X = dim M and M is compact, f~1(X) is a finite collection of points.

Definition A.1.4 ([GG73, Definition 3.2]). Let F' be a topological space. A subset G of
F is residual if it is the countable intersection of open dense subsets. F is called a Baire

space if every nonempty residual set is dense.

Proposition A.1.5 ((GG73, Proposition 3.3]). C*°(M, N) with the C*°-topology is a Baire

space.

Definition A.1.6 ([GG73, p. 57]). Let f: M — N, s € Nand let M) := {(21,..., ) €
M? | z; # x; fori # j}. Furthermore, let J5(M,N) = (a®)~1(M ()) the sfold k-
jet bundle, where o® denotes the s-fold product of the map a. We define the map
GEf ME) = JE(M,N) by jEf (a1, 2s) = (@), -, 55 F ().

Corollary A.1.7. Let f € C®°(M,N) and let X C J¥(M, N) be a submanifold such that
§5f t X. Then (j5f)~1(X) is a submanifold of M®) of dimension s - diim M — codim X.
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Theorem A.1.8 (Multijet Transversality Theorem, [GG73, Theorem 4.13]). Let M, N be
smooth manifolds, X C J¥(M, N) be a submanifold and let

Ty :={f € C*(M,N) | jif h X}.

Then T'x is a residual subset of C*° (M, N') and hence nonempty.

There also is a relative version of the Multijet Transversality Theorem.

Theorem A.1.9 (Relative Multijet Transversality Theorem). Let M, N be smooth mani-
folds, X C J¥(M, N) a submanifold. Let furthermore A C M be closed and fo: M — N be
a smooth map such that j* fo h X on an open neighbourhood U of A. Then there is a map g
arbitrarily close to fo (in the C*°-topology) such that fo|a = g|a and j¥g M X.

Sketch of proof. The nonrelative case is done in [GG73, Theorem 4.9 and Theorem 4.13],
we will indicate which changes are needed for the relative version. We will further
only sketch this proof for the case of s = 1, the changes for s > 2 are the same as
in [GG73, Proof of Theorem 4.13]. First one chooses a countable set of open subsets
X, C X, r € Nsuch that

1. YT cX \ Ocil(A> and UTZ[)XT =X \ Ozil(A).
2. ax B(X,) C V, x V! for coordinate neighbourhoods V,. ¢ M, V,/ C N such that
V; is contained in M \ A.

3. X, is compact.

For B C X one defines
Tp:={9g€ C®(M,N) | gt X atx forevery z € M such that jyg(x) € Band g = fyon A}.

and shows that T, is open and dense in 7j;. This works along the same lines as in
[GG73, Proof of Lemma 4.14]. Then

r>0 and every r > 0 and g|4 = fo|a

M X at = for every x with j; €eX
T .— mTXT_{QGCOO(M,N):g x Yo ]kg(l') r}
and hence every element of T is transverse to X and agrees with fp on A. Since Tj is a

Baire space 7' is dense. Therefore there is a map as requested in the Corollary. O
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A.2 Applications

We first need to encode properties of maps into conditions on jets. Let A”(X') denote
the diagonal in X *". We define

S (X,Y):={o € JYX,Y) | rank(c) = dimY — r}.

This is a submanifold of the jet space for all > 0.

Proposition A.2.1 ([GG73, Lemma 5.1 and Theorem 5.7]). 1. f: X — Y is an im-
mersion if and only if j* f(X) N (Ur>15,(X,Y)) = 0.

2. f: X — Y isinjective if and only if j1 f(X) N (B?)LA2(X) = 0.
Proposition A.2.2. An injective immersion from a compact manifold into a Hausdorff space
is an embedding.
Proof. This is clear, because in this case an injective map is a homeomorphism onto its
image. t
Proposition A.2.3 ((GG73, Theorem 5.4]). We have codim (S, (R x S¥=1, W)) = r(d —
k+ 7+ 1) and codim (A%(W)) = d.

Before we can give the proof of Lemma A.1 we need a few preparations.

Proof of Lemma A.1. We will show that both maps

Emb(551 x DR+ vy D) b (sh1 w pa-r+L ) B pmm(sh1 x pa-REL )

are mo-bijections. Let us consider (1) first. Let j € Emb(S*~! x DI=k+1 1¥). Since
(W, V) is (k — 1)-connected, j|gr-1, (o} is homotopic to a map f: Sk=1 < V which in
turn is homotopic to an embedding f': S*~! < V by the Whitney embedding theorem.
We need to turn this path into a path of embeddings. For this we define

A i={o e "R x S* L W): 0y € (S, W)}

Then codim A, = r-(d — (k — 1) +r) and if d > 2k — 1, we have codim A, > k
forall » > 1. If F: [0,1] x S¥=1 — W is a path such that j'F h A, it also satisfies
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jLF(R x S¥=1) N A, = () and hence is a path of immersions. If furthermore 59 F((R x
SE=12) N (B2)~1(A%(W)) = 0, then F is a path of embeddings such that F(¢, ) and
F(t,_) have disjoint images for ¢ # t'. For d > 2k + 1 we have codim A%(W) > 2k =
2 - dim(R x S*=1). It follows from multijet transversality that the set of such paths
F'is residual. If jlgi-1,40y and f’ have disjoint images (which we can arranged by
isotoping f’), then by relative multijet transversality there is a path of embeddings
connecting them. By the isotopy extension theorem this can be extended to an isotopy
of j and the map (1) is mp-surjective. For mp-injectivity let j, j' be embeddings into V/
that are isotopic through embeddings into V. Since (W, V) is (k — 1)-connected this

path can be homotoped into V' and we can use the same argument as above.

Let us now consider map (2) from above. We define the following intermediate space
Imm®(S*~! x DR W) = {f € Imm(S* " x DTFL W) 1 flgio1, 4o is injective}.
We use the criterion from Proposition B.2 to show that the inclusion

Emb(S*~! x DI FL W) — Imm®(§%~1 x DI+ 1)

is a weak equivalence. Let Go: D" — Imm(S*~1 x D4=F+1 1) such that Go(S" 1) C
Emb(S*~1 x DI=F+1 ). Since the disk D™ is compact, there exists an ¢ > 0 such that
Go()|gr—1x pa-k+1(c) 18 also injective hence an embedding because the source is com-
pact. A homotopy of Gy into Emb(S*~! x DI=k+1 11/} is then given by G (z)(p,v) :=
Go(z)(p, (1 — M1 — ¢))v) for (p,v) € S¥1 x DI=*+1 Thus it suffices to show that
Imm(S¥~1 x DA=F+L W) — Imm(S*~! x D4=F1 W) is a mp-bijection. Let j €
Imm(S*~ x D=F W). Then j|gi-1, oy is arbitrarily close to an embedding by the
Whitney embedding theorem and since immersions are open in the space of smooth
maps there is regular homotopy of j such that j|gx-1, o) is injective. So the map is
mo-surjective. For injectivity let j, j € Imm?(S*~! x DI=*+1 W) be regularly homo-
topic and let F' denote such a homotopy. The path F|gk-1, o, connecting j|gx—1 0}
and j'[gr-1, o} is homotopic to an isotopy f by relative Multijet transversality with
the same argument as above. We extend this isotopy to a path F” connecting j and j'.
Because immersions form an open subspace and because f can be chosen arbitrarily
close to F'| g1, (o} We may assume that I’ is a regular homotopy that is injective when
restricted to S¥~! x {0}. O
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Remark A.2.4. Lemma A.1 should also be true for d > 2k, since the given proof
constructs a path such that f; and f;s even have disjoint images for ¢ # ' which is not

required.

Let us now turn to Morse functions. It is well known that the space of generalized
Morse functions is connected, so we only need to show that there exists a generic path.
We define

Sp(X) == 5r(X,R)

S™M(X) = (S1(X)") N (8") " H(A™(R)) C Jo(X,R)
S1.4(X) := {0 € J*(X,R) | 0 € S1(X) and rank(d*f,,) = dim X — ¢ if [f] = o}
Si1(X):={oec B(X,R) | o€ S1(X)and d®f £ 0if [f] = o}
S11(X):={c e *(X,R) |o € S1.1(X)and &®f = 0if [f] = o}.

Proposition A.2.5. Let h be a path of generalized Morse functions.

1. 3hN S A(W) # Oand j3h, N S11(W) = 0 <= hy has a birth-death-singularity.
2. j3he(p) h S1.1(W) <= pisa birth-death-point which is generically unfolded by h.
3. 32 t(W)NS2(W) # () <= hy has two critical points with the same value.

4. jin(W)N S3(W) # () <= hy has three critical points with the same value.

Proof. 2. is [Igu88, Proposition 2.4, p.307]. The rest of the proof works by simply

deciphering the conditions on submanifolds. O

Proposition A.2.6. All of the above are submanifolds of the respective jet spaces and for ¢ > 1

we have:
1
codim S1 4(W) =d + alg ;_ )
Codimgll (W)=d+1
codim Sy 1 (W) > d + 1.
codim S" (W) =n(d+1) — 1.
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Proof. Let us consider S; (W) first. Locally we have (compare [GG73, Lemma 2.6 and
Theorem 2.7])

J2(W,R) = W x R x Hom(R% R) x Sym,
SiW)=W xRx 0 x{A¢€ Symy|rank(A)=d—q}

::Symg
So we need to compute the codimension of Sym in Sym,. This is analogous to [GG73,

B C
Lemma 5.2]. If a matrix A has rank d — g, there is a basis of R? such that A = (CT D)

where B is an invertible (d — ¢) x (d — ¢)-matrix and B and D are symmetric. Then

there is a neighbourhood U of A such that the map

B C

g:U—Sym,, g (CT 5

):D—CTBC

has 0 as a regular value and f~*(0) = Sym, which is therefore a submanifold of Sym,

with codim Sym$ = dim Sym, = %.

For S11(N) we note that Sy 1 (N) can also be seen as a submanifold of J3(N,R) (as the
preimage of the projection map J3(N,R) — J?(N, R)) and the additional condition on
5‘1,1 (N) is an open condition, so 5‘1,1 (N) is again a submanifold and its codimension is

the same as the one of S; 1(N), namely n + 1.

The estimate on S 1 (W) follows from the fact that d® f = 0 means that the 3-jet of f is

0 and therefore this is a submanifold of 51,1 (V) of strictly positive codimension.

For the last equality we note that

JEW,R) = W™ x R" x Hom(R%, R)"
ST(W) = WX x Ap(R) x 0

and so codim S"(W) =n — 1+ nd. O
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Proof of Lemma A.2. The proof will now work by encoding the desired properties of
the path h; into conditions on the jets of h;. We define

A={occ PRxW,R:0,€ 511}

A:={ocecPRxW,R: 0, € 51}

A={oc PRxW,R: 0, €85}
B":={oc JJ(R x W,R: 0y € 5"}

These submanifolds have the same codimensions as .S 1, 51,1, ?1,1 and S respectively.
Let h € C®°(R x W,R). If j3h h A, then by Proposition A.2.6 j3h(R x W) N A is a finite
collection of points. The same holds for A. If j3h th A the intersection is empty. Let
C = (o) (AR) x W) N A2 If j3((t,p), (t',p)) € C, thent = t' and p # p’ are both
nondegenerate singularities of h;. C' C J3(R x W,R) is a submanifold of codimension
2d + 3 and hence if j3h th C, then j3(W) N C = (. The set of functions satisfying these
four conditions therefore are paths of generalized Morse functions with only finitely

many, generically unfolded birth-death-singularities which appear at different times.

Let B" := a;, ' (A, (R) N B" where A, (R) denotes the 1-dimensional diagonal in R”. If
jah h B2, then j3h(Rx W)N B2 C J}(R x W,R) is a submanifold of codimension 2d +2
and hence so is (jah)~'(B?) C (R x W)? which therefore is a finite collection of points.
So, if jah M B? there are only finitely many times where h; has non-distinct critical
values. If there exists a ¢ such that h; has three critical points p, p/, p” with the same
value, then jih((R x W)3)N B3 # (). But B is a submanifold of codimension 3d+4 and
if jih h B the before-mentioned intersection is empty. If there is a ¢ such that h; has 2
critical values with 2 preimages each, then j1h N a; ' (A4(R)) N (S2(W) x S2(W)) # 0.
The submanifold a; * (A4(R))N(S?(W) x S?(W)) has codimension 342(2d+1) = 4d+5
and again, if j}h th o (A4(R)) N (S2(W) x S2(W)), the corresponding intersection is
empty.

The final property to encode is that if i, has a birth-death-point, then critical values of h;
are distinct. Let h; have a birth-death-point and two critical points with the same value.
Then j3hNaz ' (A3(R)) N (S1.1 x S?) would be nonempty. But az *(A3(R)) N (S11 x 52)
is a submanifold of codimension 2 4 d + 1 + 2d + 1 = 3d + 4 and the same argument

as above applies.

So, let h: R x W — R be a function that is constantly equal to iy near {0} x W and

equal to h; near {1} x W which satisfies:
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1. j3his transverse to A, A, A and j3h is transverse to C
2. jahis transverse to D?
3. jihis transverse to D? and j}h is transverse to a; ' (A4(R)) N (S? x S?)

4. j3 is transverse to agl(Ag(]R)) N (S11 x S?).

By the relative relative Multijet-Transversality Theorem A.1.9 the set of such functions

h is residual and hence nonempty. O






Miscellaneous

Lemma B.1. Let m: E — B be a Serre-fibration and let X be a CW-complex. Then
Map(X, F) — Map(X, B) is a Serre-fibration.

Proof. Consider the following lifting problem for D a CW-complex:

{0} x D Map(X, E)
[ ‘/E\//////
0,1] x D Map(X, B).
We obtain the following diagram
{0} x D x X - B
{ ‘,;E\//////
0,1] x D x X / B

97
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by f(t,d,z) = f(t,d)(z). Since E — B is a fibration and D is a CW-complex, the map
F exists and we define F(t,d)(z) := F(t,d, z). O

Proposition B.2. Let j : X — Y be the inclusion of a subspace. Then the following are

equivalent:

1. j is a weak homotopy equivalence,

2. for every n > 0 and every map Go: D™ — Y such that G(S"™') C X, there exists
a homotopy G starting with G such that G1(D") C X and G,(S"™ ') C X for all
A€ [0,1].

Proof. (2) = (1): We show that G is homotopic relative to S"~! to a map G into X
and invoke a standard lemma (e.g. [Gra75, p. 136]). Let Gy : D™ — Y be a map with
Go(S™ 1) € X. The map Gy is homotopic, relative to S"~1, to the map

oy = {COED 112
’ Go(2z) |zl < 5

For A > %, define

Gi(z) == G (2-2)ja)(22-1) ( |§| ) ]| =
A i
GQ,\_1(25L‘) H;p” <

N= D=

The other implication is likewise easy and not important for us. O

Lemma B.3. Let M™ C N™ be a compact submanifold of codimension r = n — m. Then the
inclusion N\7(M) < N is r—1-connected for 7(M ) any small enough tubular neighbourhood
of M.

Proof. Letk <r—1land f: (D¥,S*~1) = (N, N\ M) be a map. This is homotopic to a
smooth map f; by the theorem of Stone-Weierstrafs which in turn is homotopic to fy
which is transverse to M. Hence im f N M is a submanifold of dimension & —r < 0
and hence 0 = [f] € (N, N \ M). The tubular neighbourhood statement follows
from compactness of M and the fact that f has distance greater ¢ from M for some
e > 0. O

Lemma B.4 ([Kre99, Proposition 4], [H]J13, Proposition, Appendix III]). Let §: B —
BO(m) be a tangential structure, with B of type F,,. Let W™ : My ~~ M be a 6-cobordism
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and let My — B be n-connected. If n < 3 — 1, there exists a 0-cobordism W': My ~~ M,
such that (W', M) is n-connected. If furthermore My — B is also n-connected, there exists a
-cobordism W': My ~» My such that (W', M;) is n-connected for i = 0, 1. Furthermore W'

is 0-cobordant to W relative to the boundary.

Proof. We may perform surgery on the interior of W to turn W — B into an n-
connected. From the long exact sequence for the triple (B, W, M;) we get that M; — W
is an isomorphism on 7y, for £ < n — 1. It remains to show that it can be made surjective

on 7,. Consider the sequence

T (Mo) —Cs 1 (W) —L s 70 (W, M) —2s 71 (M) ——— 711 (W)
7n(B)

Since 7, (W, My) is a finitely generated Zm-module and b is surjective, we find ele-
ments z1,...,x; € m,(W) that are mapped to generators. Also, there are preimages
Yiy-- Y € m(My) of a(z1),...,a(x;). Let z; := z; — ¢(y;). Then the b(z;) still are
generators and a(z;) = 0. For this reason and by the Whitney embedding theorem one
can assume that z; are represented by embeddings ¢; with trivial normal bundle and
hence they can be surgered away. Therefore we get a cobordism W' such that (W', M)
is n-connected and W' is obtained by performing n + 1-surgeries on the interior of 1.
Furthermore, a o ¢;|gn (0} is nullhomotopic and hence it can be extended to a map

®;: D" — Band we get a structure map W, — B. So, W' is also a 8-cobordism.

We now do the same trick for M; but we have to show that the connectivity of (W, M)
is not destroyed if an n + 1-surgery is performed. Let ¢: S™ x D4~" — W be an
n + l-surgery embedding and let W := W \ im ¢. We get

d — n — 1-connected o n-connected
w 1974 W

72~
On n
e(»te d
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Since d —n — 1 > ¢ > n, the middle vertical map and hence M, — W, are n-

connected. 0

Lemma B.5. Let f: X — X be a map. Then there exists a long exact sequence
oo (X)) B xS mYT) S BNX)
which is called the Wang sequence. This reduces to a short exact sequence
0 — H"(X); -2 H"Y(T)) -5 H"(X) — 0

where Ay denotes the coinvariants and A' the invariants of A with respect to f.

Proof. This is dual to [Hat02, Example 2.48]. Consider the quotient map ¢: (X x I, X x
0I) — (T, X). We have the following diagram:

H™(Ty)

where j* and the vertical map § come from the long exact sequence for (X x I, X x 9I).

The dashed arrows give the desired sequence. ]
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