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Abstract

In this thesis we study the action of the θ-mapping class group of a high-dimensional manifold

M on the spaceR+(M) of metrics of positive scalar curvature on M via pullback.

We show that this action factors through the bordism group Ωθd of closed θ-manifolds via

the mapping torus construction. We then give examples of diffeomorphisms that have null-

bordant mapping tori implying that the induced pullback map f∗ is homotopic to the identity.

Furthermore we show that some old detection results descend fromR+(M) to the observer

moduli space.

Afterwards we construct a family of H-space structures on R+(M) for certain M . We show

that all of these are isomorphic and use this to derive a criterion for the action map to be trivial

up to homotopy. We also give a criterion for the action to be nontrivial leading to a complete

classification of the action on simply connected Spin-7-manifolds.

In the last chapter we sketch how one can possibly generalize the recent result about the

homotopy groups of R+(M) from [BERW17] to a certain class of curvature conditions that

imply positive scalar curvature.

Zusammenfassung

In dieser Arbeit untersuchen wir die Wirkung der θ-Abbildungsklassengruppe einer

hochdimensionalen Mannigfaltigkeit M auf dem Raum R+(M) der Metriken positiver

Skalarkrümmung auf M via Rücktransport.

Wir zeigen, dass diese Wirkung über die Abbildungstoruskonstruktion durch die Kobordis-

musgruppe Ωθd von geschlossenen θ-Mannigfaltigkeiten faktorisiert. Anschließend geben wir

Beispiele von Diffeomorphismen, deren Abbildungstori nullbordant sind, was impliziert, dass

die induzierte Abbildung f∗ homotop zur Identität ist. Des Weiteren zeigen wir, dass einige

alte Detektierungsresultate vonR+(M) auch für den Beobachtermodulraum erhalten bleiben.

Außerdem konstruieren wir eine Familie von H-Raumstrukturen auf R+(M) für gewisse

M . Wir zeigen, dass all diese isomorph sind, und entwickeln hiermit ein Kriterium dafür,

dass die Wirkung bis auf Homotopie trivial ist. Zudem geben wir ein Kriterium für Nicht-

Trivialität der Wirkung an, was uns erlaubt die Wirkung auf einfach zusammenhängenden

Spin-7-Mannigfaltigkeiten komplett zu klassifizieren.

Im letzten Kapitel skizzieren wir, wie es möglich sein sollte, ein Resultat aus [BERW17] über

die Homotopiegruppen vonR+(M) auf eine gewisse Klasse von Krümmungsbedingungen,

die positive Skalarkrümmung implizieren, zu verallgemeinern.
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Introduction

At first sight, the fields of differential geometry and algebraic topology seem substan-

tially different. The former comprises the study of Riemannian metrics, which are

fibrewise scalar products on the tangent bundle of a smooth manifold. These metrics

are rather sensitive to changes to the manifold. Algebraic topology on the other hand

measures coarse properties of a space which are homotopy-, homeomorphism- or

diffeomorphism-invariant. However, there is a deep connection between topology and

scalar curvature geometry.

The first glimpse of this connection was the discovery of the Lichnerowicz-formula

(cf. [Lic63]), relating the difference of the square of the Dirac-operator and the Laplace–

Beltrami-operator on spinors to the scalar curvature:

D2 −∇∗∇ =
scal

4

In particular, since ∇∗∇ is a positive operator, positivity of the scalar curvature forces

the Dirac-operator to be positive. It therefore is invertible making its index vanish

if M is closed. In the same year the Atiyah–Singer-index-theorem was proven (cf.

[AS63]), providing the possibility to compute the index of the Dirac-operator in terms

of topological invariants. To be precise, the index of D is equal to the Â-genus of M .

This means that there is an obstruction to the existence of a positive scalar curvature

metric (hereafter: psc-metric) expressed in purely topological terms.

Another connection was discovered independently in the late 1970’s by Gromov–

Lawson [GL80] and Schoen–Yau [SY79]. They showed that the existence question for a

metric of positive scalar curvature is invariant under high-codimension surgeries:
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Surgery Theorem ([GL80, Theorem A], [SY79, Corollary 4]). Let M0,M1 be smooth

manifolds. Let M0 admit a psc-metric and let M1 be obtained from M0 by a sequence

of surgeries of codimension at least 3. Then M1 also admits a psc-metric.

If we assume that dimM1 = d − 1 ≥ 5, we know that M1 is obtained from M0 by

surgeries in the appropriate dimensions if and only if there exists a manifold W of

dimension d such that ∂W = M0 qM1 and M1 ↪→W is 2-connected. The discovery of

the surgery theorem dramatically increased the number of manifolds known to admit

a psc-metric.

Using tangential structures, it is possible to get rid of the condition on the cobordism:

Let θ : B → BO(d) be a fibration. A θ-structure on a manifold M is a lift of its Gauss-

map along θ. If M0,M1 and W admit θ-structures and the map M1 → B is 2-connected,

one can perform surgery on the interior of W to obtain a cobordism W ′ : M0  M1

where the inclusion M1 ↪→W ′ is 2-connected, hence the surgery theorem applies. Thus

the existence question for psc-metrics can be answered by giving generators of the

appropriate cobordism groups that admit metrics of positive scalar curvature.

Examples of tangential structures arise as l-connected covers of BO(d), which are

BSO(d), BSpin(d), etc. For example, if M is simply connected and non-spinnable,

the map M1 → BSO(d) is 2-connected and if M1 is simply connected and Spin,

the map M1 → BSpin(d) is 2-connected. In order to show that a simply connected

manifold M1 admits a psc-metric, it therefore suffices to find a psc-manifold M0

orientedly cobordant (or Spin-cobordant, respectively) to M1. For simply connected,

non-spinnable manifolds this has been accomplished by Gromov–Lawson who showed

that every such manifold of dimension at least 5 admits a psc-metric. Later, Stephan

Stolz [Sto92] solved the Spin-case: He was able to determine that the index of the

Dirac-operator mentioned above is the only obstruction to the existence of a psc-metric

on simply connected Spin-manifolds of dimension at least 5. The (stable) Gromov–

Lawson–Rosenberg conjecture predicts that a similar statement also holds in the

non-simply connected case. There is a counterexample to the unstable conjecture (cf.

[Sch98]). The stable conjecture follows from the Baum-Connes conjecture and hence is

confirmed for many groups but in general it is still open.

The interest of topologists in positive scalar curvature also goes into another direction:

A lot of effort has been put into understanding the homotopy type of the space of all

psc-metricsR+(M). This all started when Hitchin [Hit74] used index-theory to show
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that the zeroth and first homotopy group of this space contain nontrivial elements for

the standard sphere Sd−1. These elements are spotted as follows: For a diffeomorphism

f of M and a Riemannian metric g, there exists the pullback metric f∗g on M . If g

has positive scalar curvature, so does f∗g and one gets an action of the group of

diffeomorphisms Diff(M) on R+(M). Fixing a base point g0 ∈ R+(M), we get the

orbit map Diff(M) → R+(M), f 7→ f∗g0. Hitchin constructed a homomorphism

πk(R+(M)) → KO−k−1−(d−1)(pt), where d − 1 is the dimension of M , and showed

that the composition πk(Diff(M)) → πk(R+(M)) → KO−k−d(pt) is nontrivial for

k = 0, 1 and M = Sd−1 provided that k + d ≡ 1, 2(8). In other words, nontrivial

elements of πk(R+(M)) are given by nontrivial elements in πk(Diff(M)) that are not

in the kernel of the orbit map. Over the years, there have been many other detection

results, for example by Gromov–Lawson [GL83], Carr [Car88], Botvinnik–Hanke–

Schick–Walsh [BHSW10], Crowley–Schick [CS13], Hanke–Schick–Steimle [HSS14],

Crowley–Schick–Steimle [CSS16], Botvinnik–Ebert–Randal-Williams [BERW17] and

Ebert–Randal-Williams [ERW17a].

In this thesis we study the homotopy class of the map Diff(M) → hAut(R+(M))

associated to the action mentioned above. Here, hAut denotes the group-like H-space

of self-homotopy-equivalences. The main geometric tool we use is a generalization

of the surgery theorem due to Chernysh (cf. [Che04b], see also [Wal13]). Let Md−1

be a closed manifold and let ϕ : Sk−1 ×Dd−k ↪→M be a surgery datum in M , i. e. an

embedding. We denote by Mϕ the manifold obtained by performing surgery on M

along ϕ.

Parametrized Surgery Theorem ([Che04b, Theorem 1.1], [Wal13, Main Theorem]). If

d−k ≥ 3, there is a zig-zag of mapsR+(M)
'←− . . . −→ R+(Mϕ), where the arrow pointing

towardsR+(M) is a weak equivalence.

Note thatR+(M) is homotopy equivalent to a CW -complex and hence we can invert

all weak equivalences by Whitehead’s theorem. So we obtain a well-defined homotopy

class of a map Sϕ : R+(M) −→ R+(Mϕ). This is called the surgery map.

In order to state our main result, we need to introduce some terminology. For precise

definitions see Chapter 1. For a once-stable1 tangential structure θ : B → BO(d), we

define Ωθ
d(M0,M1) to be the set of equivalence classes of triples [W, f0, f1], where W is

a d-dimensional θ-cobordism with boundary ∂W = ∂0W q ∂1W and fi : ∂iW
∼=−→Mi

1A tangential structure is called once stable if it is a homotopy pullback of a fibration B → BO(d+ 1)
(cf. Section 1.1).
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are θ-diffeomorphisms. The equivalence relation is given by the cobordism relation.

This gives rise to the groupoid Ω̂θ
d,2: The objects are given by (d − 1)-dimensional

θ-manifolds and the morphism set morΩ̂θd,2
(M0,M1) is defined to be Ωθ

d(M0,M1) if

the structure map M1 → B is 2-connected and empty otherwise. Furthermore, let

hTop denote the homotopy category of spaces. The main theorem of this thesis is the

following.

Theorem A (Theorem 3.3.1). Let d ≥ 7. Then there is a unique2 functor S : Ω̂θ
d,2 −→ hTop

such that

1. S(M) = R+(M),

2. S(M × I, id, f−1) = [g 7→ f∗g],

3. S(tr ϕ, id, id) = Sϕ for tr ϕ the trace of a surgery datum ϕ : Sk−1 ×Dd−k ↪→M with

d− k ≥ 3.

Remark. The definition of the map S goes back to Walsh (cf. [Wal11] and [Wal14]): He shows

that a psc metric g0 on M0 can be extended to a metric G on a cobordism W : M0  M1

provided that (W,M1) is 2-connected. He shows that this construction gives a well defined

map π0(R+(M0)) → π0(R+(M1)) (cf. [Wal14, Theorem 1.3]). The improvement given by

Theorem A lies in the following two things: First, instead of a map on π0 we get a homotopy

class of an actual map of spaces and second we show that the map S is also cobordism-invariant.

In order to state the most immediate consequence of Theorem A we need some notation.

We roughly define the structured mapping class group Γθ(M) to be the components of

the groupoid of θ-diffeomorphisms of M (see Section 1.2 for the precise definition)

and let Ωθ
d := Ωθ

d(∅, ∅). There is a group homomorphism Γθ(M) → Ωθ
d mapping the

homotopy class of a diffeomorphism [f ] to its mapping torus denoted by [Tf ].

Corollary B (Corollary 4.1.1). Let d ≥ 7 and let θ : B → BO(d) be the stabilized tangential

2-type of Md−1. Then there is a group homomorphism SE : Ωθ
d → π0

(
hAut(R+(M))

)
such

that the following diagram commutes:

Γθ(M)

Ωθ
d

π0(hAut(R+(M)))

[f ]

[Tf ] [W ]

SEW[g 7→ f∗g]

2Up to natural isomorphism.
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In particular, a θ-diffeomorphism f of M acts trivially on R+(M) if its mapping torus is

nullbordant.

Let us now give an outline of this thesis.

Chapter 1 provides the necessary background material. We first introduce the notion

of tangential structures and give a few important examples in Section 1.1. Afterwards,

we define the structured mapping class group and we give two models for it. We also

compare it to the mapping class group of orientation preserving diffeomorphisms.

Section 1.3 is concerned with cobordism theory. We introduce the cobordism set

Ωθ
d(M0,M1) of θ-manifolds with fixed boundary θ-diffeomorphic to M0 qM1. We

proceed by showing that this has a free and transitive action from the (structured)

cobordism group Ωθ
d := Ωθ

d(∅, ∅) of closed manifolds. This implies for example that

the mapping torus construction gives a homomorphism Γθ(M) → Ωθ
d. In the next

two Sections (1.4 and 1.5) we discuss handle decompositions of manifolds. In order

to compare two of those we first give a recollection on parametrized Morse theory

in Section 1.4. We continue by constructing a handle decomposition from a Morse

function and we analyze how it changes if one picks a different Morse function. In

Section 1.7 we introduce the main object of interest: the spaceR+(M) of psc-metrics on

a manifold M . We explain its topology and we state the general version of Chernysh’s

Parametrized Surgery Theorem along with a few applications.

In the subsequent two chapters we will prove the main theorem. The construction

of S and the proof that S is well-defined has essentially two steps: First we have to

carefully decompose a cobordism into elementary ones, explain how these correspond

to surgery data and how two different decompositions are related. This does not

involve psc-metrics and we find it best to separate this “cobordism-direction” from the

“psc-direction”. Having the decomposition at hand we can turn to step two and use

the Parametrized Surgery Theorem to define the map S. We now have to study the

behavior of S on psc-metrics and how different decompositions affect the map S.

In Chapter 2 we start moving in the cobordism-direction. After recalling the defini-

tion of the unstructured cobordism category Cobd, we give a slightly different model

for π0(Cobd) denoted by Bordd: It has the same objects and a morphism is given

by a triple (W, f0, f1) consisting of a d-manifold W with decomposable boundary

∂W = ∂0W q ∂1W and diffeomorphisms fi : ∂iW
∼=−→Mi. Two morphisms (W, f0, f1)

and (W ′, f ′0, f
′
1) are identified if there exists a diffeomorphism F : W

∼=−→ W ′ that is
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compatible with the given diffeomorphisms fi and f ′i . We proceed to give a presenta-

tion of Bordd in terms of generators and relations. This leads to the notion of the surgery

datum category Xd: The objects of this category are given by objBordd
and morphisms

are generated as (possibly empty) strings of composable elementary morphisms of the

following form:

1. For a surgery datum ϕ : Sk−1 ×Dd−k ↪→M , let Sϕ : M →Mϕ be a morphism.

2. For diffeomorphism f : M
∼=−→M ′, let If : M →M ′ be a morphism.

For the relations among these generators see Proposition 1.5.7. We then define wide

subcategories Borda,bd and X a,bd for a, b ∈ N ∪ {−1} by requiring the following: For an

element (W, f0, f1) ∈ morBorda,b
d

(M0,M1) the map f−1
0 : M0 ↪→ W is a-connected and

f−1
1 : M1 ↪→ W is b-connected and for Sϕ ∈ morX a,b

d
(M0,M1) we require that for Sϕ

the surgery datum ϕ has index k ∈ {a+ 1, . . . d− b− 1}. Using the 2-index theorem of

Hatcher–Igusa (cf. [Hat75] and [Igu88]) we derive the following result.

Theorem C (Theorem 2.3.3). For d ≥ 7 there is an equivalence of categories

P−1,2 : X−1,2
d → Bord−1,2

d

which is the identity on objects and is given on morphisms by the following:

1. For f : M0 →M1, If is mapped to (M0 × [0, 1], id, f) ∼= (M1 × [0, 1], f−1, id)

2. For a surgery datum ϕ in M , Sϕ is mapped to (tr (ϕ), id, id).

Having this result at hand we are able to turn towards the psc-direction: In the following

Chapter 3 we define and analyze the surgery map

S : morBord−1,2
d

(M0,M1) −→ [R+(M0),R+(M1)].

It is given by using the presentation from the previous chapter: The morphism If

is mapped to f∗ and for ϕ : Sk−1 × Dd−k ↪→ M0 with d − k ≥ 3, the morphism Sϕ

is mapped to the surgery map Sϕ : R+(M) −→ R+(Mϕ). We proceed by showing

that this map is well-defined, i. e. that it respects the relations of Xd. We get a well

defined homotopy class of a map SW ∈ [R+(M0),R+(M1)] depending only on the

diffeomorphism class of W relative to the boundary. Afterwards we show that SW
is invariant under surgeries in the interior of W assuming that these surgeries have

the right dimensions and codimensions. Using the fact that the cobordism relation is
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generated by surgeries this yields the cobordism invariance of the surgery map and

thus we have proven Theorem A.

In Chapter 4 we give several applications of Theorem A and Corollary B. The first

one follows immediately from the fact thatΩSpin
7
∼= 0 ∼= ΩSO

7 : Let Diff+(M) denote the

group of orientation preserving diffeomorphisms of M .

Corollary D (Corollary 4.1.3). Let M6 be a simply connected manifold. Then the action of

Diff+(M) onR+(M) is homotopy-trivial, i. e. for every orientation preserving diffeomorphism

f of M the pullback map f∗ is homotopic to the identity.

After recalling a few facts about the oriented cobordism ring and the connection to the

Spin-cobordism ring we continue by computing cobordism classes of mapping tori

and we obtain for example the following implications (for a full list see Section 4.1.2).

Corollary E (Corollary 4.1.21). Let d ≥ 7 and let Md−1 be a simply connected, closed,

oriented manifold. If d ≡ 0(4), let all Pontryagin classes of M vanish. Let f : M
∼=−→M be an

orientation preserving diffeomorphism. Then (f∗)2 : R+(M)→ R+(M) is homotopic to the

identity.

Being more restrictive on the manifold M , we get a stronger result.

Corollary F (Corollary 4.1.23). Let d ≥ 7 and d 6≡ 1, 2(8). Let Md−1 be a simply connected,

stably parallelizable manifold. Then the action of Diff+(M) onR+(M) is homotopy-trivial.

This result shows that the detection result of Hitchin [Hit74] is the only possible

one of this kind for high-dimensional spheres. An example of an implication for a

non-spinnable manifold is the following.

Corollary G (Corollary 4.1.27). Let X2k, k ≥ 3 be a stably parallelizable, simply connected,

closed manifold and letH2k−i(X;Z/2) = 0 for i = 3, 5. Then Diff+(X×CP2) acts homotopy-

trivial onR+(X × CP2).

The next application we present is the canonical follow-up. Having a rigidity result for

an action it is natural to ask if one can draw conclusions about the quotient. However,

since the action of the diffeomorphism group is not free one has to consider the observer

moduli space M+
x0

(M). This is obtained by taking the quotient with respect to the

subgroup of those diffeomorphisms f that fix a point x0 ∈M and whose differential
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dfx0 at x0 is given by the identity. Using the results from the previous sections we

show that some of the results from [BERW17] on π0(R+(M)) descend to π0(M+
x0

(M)):

Theorem H (Theorem 4.2.5). Let d ≥ 7 and let Md−1 be a 2-connected Spin-manifold.

1. If d ≡ 0(4) and all Pontryagin classes of M vanish, the spaceM+
x0

(M) has infinitely

many path components.

2. If d 6≡ 1, 2(8) and M is stably parallelizable, the map π0(R+(M)) −→ π0(M+
x0

(M))

is a bijection.

Using the work from [GRW16] on the mapping class group of the manifold W 2n
g :=

(Sn × Sn)#g we also detect nontrivial elements of π1(M+
x0

(W 2n
g )).

Theorem I (Theorem 4.2.6). For g ≥ 5, n ≥ 3 and n 6≡ 0(4) there is a surjective map

π1(M+
x0

(W 2n
g ))→ Ω

〈n〉
2n+1 ⊕Gn where Ω

〈n〉
2n+1 denotes the BO(2n+ 1)〈n〉-cobordism group

and

Gn ∼=


(Z/2)2 if n is even

0 if n = 3, 7

Z/4 otherwise.

Afterwards we give an application which is a bit more surprising: We use Theorem A

to define a homotopy-commutative and homotopy-associative H-space multiplication

µW on R+(M), provided that W : ∅  M is a θ-nullbordism of M . If W ′ : ∅  
M ′ is another θ-nullbordism of another manifold M ′, we prove that SW opqW ′ is an

equivalence ofH-spaces. We also show that the path components of invertible elements

with respect to µW are independent of the choice of W . Using this H-space structure

we can also derive the following.

Theorem J (Theorem 4.4.1 and Remark 4.4.2). Let d ≥ 7 and let Md−1 be a simply con-

nected Spin-manifold which is Spin-nullbordant. Let f be a Spin-diffeomorphism. Then the

pullback f∗ : R+(M)→ R+(M) is homotopic to the identity if and only if SSd−1×[0,1] q Tf
(g◦)

and g◦ are homotopic inR+(Sd−1), where g◦ denotes the round metric on Sd−1.

Using an argument in the style of Carr (cf. [Car88]) we also deduce a non-triviality

criterion.

Proposition K (Proposition 4.4.3). Let M be a (d− 1)-dimensional, simply connected Spin-

manifold and let W d be manifold with Â(W ) 6= 0. Then SEW (g) 6∼ g for every psc-metric g

on M . In particular, SEW is not homotopic to the identity.
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Using this result we are able to fully classify the action of DiffSpin(M) onR+(M) for

M a simply connected Spin-manifold of dimension 7:

Corollary L (Corollary 4.4.4). Let M be a 7-dimensional, simply connected Spin-manifold

and let f : M
∼=−→M be a Spin-diffeomorphism. Then the following are equivalent:

1. Â(Tf ) = 0.

2. Tf is Spin-nullbordant.

3. f∗ is homotopic to the identity.

4. f∗g ∼ g for every g ∈ R+(M).

5. There exists a metric g ∈ R+(M) such that f∗g ∼ g.

The final Chapter 5 of this thesis is somewhat disconnected from the rest. Recently,

Kordaß [Kor18] generalized Chernysh’s Parametrized Surgery Theorem to a more

general class of curvature conditions. These are called deformable, codimension c surgery

stable curvature conditions, where c ≥ 3. We will abbreviate this by dCcSS. We apply

Kordaß’ result to derive an analogue of our main result for dCcSS which encode

the mixed-torpedo condition. Most of the proofs go through without change but the

dimension restrictions change. Let C be a dCcSS that encodes the mixed torpedo

condition and letRC(M) denote the space of metrics satisfyingC. We get the following

result.

Corollary M (Corollary 5.2.10). Let d ≥ 2c + 1 and let Md−1 be a (c − 2)-connected

BO(d)〈c− 1〉 manifold. If d ≡ 0(4) let all Pontryagin classes of M vanish. Let f : M
∼=−→M

be an orientation preserving diffeomorphism. Then (f∗)n : RC(M)→ RC(M) is homotopic

to the identity for some n ∈ N.

Afterwards we indicate how to extend the detection result of Botvinnik–Ebert–Randal-

Williams [BERW17] to dCcSS. We first prove a special case of the existence of stable

metrics.

Lemma N (Lemma 5.3.1). Let d ≥ 2c and let V d−1 : Sd−2  Sd−2 be a (c− 2)-connected,

BO(d)〈c− 1〉-cobordism. Also, assume that V is BO(d)〈c− 1〉-cobordant to Sd−2 × [0, 1]

relative to the boundary. Then there exists a metric g ∈ RC(V )g◦,g◦ with the following

property: If W : Sd−2  Sd−2 is cobordism and h ∈ R(Sd−2) is a boundary condition such
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that h+ dt2 ∈ RC(Sd−2 × [0, 1]) then the two gluing maps

µ( , g) : RC(W )h,g◦ −→ RC(W ∪ V )h,g◦

µ(g, ) : RC(W )g◦,h −→ RC(V ∪W )g◦,h

are homotopy equivalences.

We use this to show that for a certain class of manifolds M with boundary Sd−1 the

action of Diff∂(M) factors through an abelian group:

Theorem O (Theorem 5.3.2). Let d ≥ 2c and letMd−1 be a (c−2)-connected,BO(d)〈c−1〉-
manifold with boundary ∂M = Sd−2. Also, assume that M is BO(d)〈c − 1〉-cobordant to

Dd−1 relative to the boundary. Then the image of the action homomorphism π0(Diff∂(M))→
π0(hAut(RC(M)gd−2

◦
)) is an abelian group.

Using this it should be possible to generalize the results from [BERW17] to dCcSS with

c = 3, 4 that imply positive scalar curvature. This would show that the nontrivial

elements in πk(R+(M)) are in the image of the inclusion mapRC(M) ↪→ R+(M).

xiv
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1
Preliminaries

1.1 Tangential structures and Moore-Postnikov towers

In this section we recall the notion of tangential structures and give the examples most

important to us. For d ≥ 0 let BO(d) be the classifying space for the d-dimensional

orthogonal group and let Ud := EO(d) ×
O(d)

Rd be the universal vector bundle over

BO(d). Let θ : B → BO(d) be a fibration. We call θ a tangential structure.

Definition 1.1.1. A θ-structure on a real rank(d)-vector bundle V → X is a bundle map

l̂ : V → θ∗Ud. A θ-structure on a manifold W d is a θ-structure on TW and a θ-manifold

is a pair (W, l̂) of a manifold W and a θ-structure l̂ on it. For 0 ≤ k < d a stabilized

θ-structure on Mk is a θ-structure on TM ⊕ Rd−k.

An important source of tangential structures are covers of BO(d). For example we

have BSO(d)→ BO(d) or BSpin(d)→ BO(d) or more generally BO(d)〈k〉 → BO(d),

where BO(d)〈k〉 denotes the k-connected cover of BO(d). Other sources of tangential

structures are Moore-Postnikov towers.

Definition 1.1.2 ([Hat02, p. 414]). Let X,Y be connected spaces and let f : X → Y be

a map. A Moore-Postnikov tower for f is a collection of tupels (Pn, fn, gn, hn)n∈N, where

1



2 Tangential structures and Moore-Postnikov towers

Pn are spaces, fn : X → Pn is an n-connected map, gn : Pn → Y is an n-coconnected

fibration and hn : Pn+1 → Pn is a fibration such that the following diagram commutes:

X Y

P1

P2

P3

...

f

f1

f 2

f 3

g1

h1
g
2

h2

g
3

h3

We call (Pn, fn, gn, hn) the n-th stage of a Moore-Postnikov tower.

Theorem 1.1.3 ([Hat02, Theorem 4.71]). Every map f : X → Y between path-connected

spaces has a Moore-Postnikov-tower, which is unique up to homotopy equivalence.

Definition 1.1.4. Let Md−1 be a connected manifold, let l : M → BO(d) be the classify-

ing map of the stabilized tangent bundle and let l̂ : TM ⊕ R → Ud be a bundle map

covering l. The n-th stage of the Moore-Postnikov tower for the map l is called the

stabilized tangential n-type of M . We write Bn(M) := Pn in this case.

We call θ once-stable (see [GRW14, Definition 5.4]) if there exists a map θ : B → BO(d+1)

which fits into a (homotopy) pullback diagram as follows:

B B

BO(d) BO(d+ 1)

θ θ

We call θ n-stable for n ≥ 1 if θ is once-stable and θ is (n−1)-stable (with the convention

that 0-stable is the empty condition). We call θ stable if it is n-stable for every n ≥ 1.

Proposition 1.1.5 ([GRW14, Lemma 5.9]). If d− 1 ≥ 3, the tangential structure given by

the (stabilized) tangential 2-type of a manifold is stable.
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Example 1.1.6. 1. The tangential 2-type of a connected spin manifold M of dimen-

sion at least 3 is BSpin(d)×Bπ1(M).

2. The tangential 2-type of a simply connected, non-spinnable manifold M of

dimension at least 3 is BSO(d).

Proof. The first part is obvious asBSpin(d) is 2-connected for d ≥ 3. For the second part

we note that the map l : M → BSO(d)×Bπ1(M) is an isomorphism on π1 as BSO(d)

is simply connected. Furthermore, we have the isomorphism π2BSO(d) → Z/2Z
given by [β] 7→ 〈w2(θ∗Ud), β∗[S

2]〉 for θ : BSO(d) → BO(d). The map l∗ : π2(M) →
π2(BSO(d))→ Z/2Z sends a class [α] to

〈w2(θ∗Ud), l∗α∗[S
2]〉 = 〈l∗w2(θ∗Ud), α∗[S

2]〉 = 〈w2(l∗θ∗Ud︸ ︷︷ ︸
∼=TM

), α∗[S
2]〉

Since M is non-spinnable, it’s second Stiefel-Whitney class is nonzero. Furthermore, as

M is simply connected, the Hurewicz homomorphism π2(M)→ H2(M) is surjective

and there exists an α such that the above expression is nonzero and M → BSO(d) is

surjective on π2.

1.2 Mapping class groups

In this section we will give the definitions and present two models for the structured

mapping class group of a manifold.

Definition 1.2.1. For a smooth manifold Md−1 we denote by Diff(M) the topological

group of diffeomorphisms of M with the C∞-topology. If M is oriented we denote the

subgroup of orientation preserving diffeomorphisms of M by Diff+(M). The (unoriented)

mapping class group Γ(M) is defined to be π0(Diff(M)) and the oriented mapping class

group Γ+(M) is defined as π0(Diff+(M)).

Definition 1.2.2. Let Md−1 be a smooth oriented manifold. We define

BDiffθ(M) := EDiff(M) ×
Diff(M)

Bun(TM ⊕ R, θ∗Ud),

where we use the model EDiff(M) := {j : M ↪→ R∞−1} which is the (contractible)

space of embeddings and Bun( , ) denotes the space of bundle maps. More concretely,

BDiffθ(M) = {(N, l̂) : N ⊂ R∞−1, N ∼= M and l̂ ∈ Bun(TN ⊕ R, θ∗Ud)}.
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Given an embedding j : M ↪→ R∞−1 and a (stabilized) θ-structure l̂ on M , we get a

base-point (j(M), l̂) ∈ BDiffθ(M). Furthermore, we define

EθDiff(M) := EDiff(M)× Bun(TM ⊕ R, θ∗Ud).

We also define the universal M -bundle with θ-structure UM,θ by

UM,θ :=
(
EDiff(M)×Bun(TM ⊕ R, θ∗Ud)

)
×

Diff(M)
M −→ BDiffθ(M).

Remark 1.2.3. For θBSO : BSO(d)→ BO(d) we abbreviateBDiffθBSO(M) byBDiff+(M).

Note that with our definition EDiff+(M) is not contractible but homotopy equivalent

to Bun(TM ⊕ R, θ∗BSOUd) which has two contractible components (cf. Lemma 1.2.6

and Lemma 1.2.7)

Definition 1.2.4 (Structured Mapping Class Group). Let M be a smooth submanifold

of R∞−1 and let l̂ be a stabilized θ-structure on M . The θ-structured mapping class group

Γθ(M, l̂) is defined by

Γθ(M, l̂) := π1(BDiffθ(M), (M, l̂)).

For γ : S1 → BDiffθ(M) we define the structured mapping torus Mγ := γ∗UM,θ.

Remark 1.2.5. The mapping torus Mγ has a fiber wise θ-structure. Since the tangent

bundle of the circle is trivial, this gives a θ-structure on Mγ .

Before further analyzing the structured mapping class group let us have a closer look

at the space of bundle maps Bun(V, θ∗Ud) for a rank(d) vector bundle πV : V → X over

a finite CW -complex X . Let τ̂ : V → Ud be a fixed bundle map and let τ : V → BO(d)

be the underlying map of spaces. We get an isomorphism of bundles

ατ : V → τ∗Ud := {(p, u) ∈ X × Ud : τ(p) = πUd(u)}

w 7→ (πV (w), τ̂(w)).

Let τ : τ∗Ud → Ud and θ : θ∗Ud → Ud denote the induced maps. Then τ ◦ ατ = τ̂ . Now

we define liftsτ,θ := {l : X → B : θ ◦ l = τ} to be the space of lifts of τ along θ and

Bunτ̂ ,θ := {l̂ ∈ Bun(V, θ∗Ud) : θ ◦ l̂ = τ̂} to be the space of lifts of bundle maps. Let zV
denote the zero section of V . We get a map v : Bun(V, θ∗Ud)→ Map(X,B) defined by

v(l̂) = πθ∗Ud ◦ l̂ ◦ zV . This induces a map vτ̂ ,θ : Bunτ̂ ,θ −→ liftsτ,θ.



Chapter 1 - Preliminaries 5

Lemma 1.2.6. The map vτ̂ ,θ : Bunτ̂ ,θ −→ liftsτ,θ is a homeomorphism.

Proof. We prove this lemma by constructing an inverse map. Let l ∈ liftsτ,θ. Then we

define

b(l) : V
ατ−→ τ∗Ud︸ ︷︷ ︸

=l∗θ∗Ud

l−→ θ∗Ud.

and we claim that l 7→ b(l) is an inverse to the map v. Note that l : l∗θ∗Ud → θ∗Ud is

given by l(p, u) = (l(p), u). Then

vτ̂ ,θ(b(l))(p) = πθ∗Ud ◦ l ◦ ατ ◦ zV (p) = πθ∗Ud

(
l
(
p, τ̂(zV (p))

))
= πθ∗Ud

(
l(p), τ̂(zV (p))

)
= l(p)

and so vτ̂ ,θ ◦ b = id.

Let l̂ ∈ Bunτ̂ ,θ. Then for w ∈ V we have l̂(w) = (bl̂, ul̂) for some (bl̂, ul̂) ∈ θ
∗Ud. Note

that bl̂ = πθ∗Ud ◦ l̂ ◦ zV (πV (w)) and θ(bl̂, ul̂) = ul̂. Since l̂ is a lift of τ̂ we see that

ul̂ = θ(l̂(w)) = τ̂(w). Now we compute

b(vτ̂ ,θ(l̂))(w) = πθ∗Ud ◦ l̂ ◦ zV ◦ ατ (w)

= πθ∗Ud ◦ l̂ ◦ zV (πV (w), τ̂(w))

=
(
πθ∗Ud ◦ l̂ ◦ zV (πV (w)), τ̂(w)

)
= (bl̂, ul̂) = l̂(w).

Lemma 1.2.7. The map Bun(V, θ∗Ud) −→ Bun(V,Ud) is a Serre fibration.

Proof. We need to consider the following lifting problem:

{0} ×D

[0, 1]×D

Bun(V, θ∗Ud)

Bun(V,Ud)

A

a

A

Using the map v from above we get a diagram

{0} ×D

[0, 1]×D

Map(X,B)

Map(X,BO(d)).

v ◦A

v ◦ a

A’
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By Lemma B.1 we know that Map(X,B) → Map(X,BO(d)) is a Serre-fibration and

the dashed arrow A′ in this diagram exists. We then define

A(t, p)(w) :=
(
A′(t, p)(πV (w)), a(t, p)(w)

)
.

Since Bun(TM ⊕ R, Ud) is contractible by the classification of bundles, Lemma 1.2.6

and Lemma 1.2.7 imply that the space Bun(TM ⊕ R, θ∗BSOUd) has two contractible

components provided that M is orientable.

Now let us continue investigating Γθ(M, l̂). There is a forgetful map BDiffθ(M) →
BDiff(M) that induces a map Γθ(M, l̂) → Γ(M) = π0(Diff(M)). So, every element

γ ∈ Γθ(M, l̂) has an associated isotopy class of an actual diffeomorphism f : M →M .

The underlying (unstructured) manifold of the mapping torus Mγ is given by the usual

mapping torus Tf of f .

Proposition 1.2.8. Let θ : BO(d)〈k〉 → BO(d) and let M be a (k− 1)-connected θ-manifold

of dimension d− 1 ≥ k + 1 ≥ 3. Then the forgetful map BDiffθ(M)→ BDiff+(M) induces

a surjection

Γθ(M, l̂)� Γ+(M)

Proof. The forgetful map BDiffθ(M)→ BDiff+(M) fits into the following diagram of

fibrations.

Diff(M)

EDiffθ(M)

BDiffθ(M)

Diff(M)

EDiff+(M)

BDiff+(M)

Bun(TM ⊕ R, θ∗Ud) Bun(TM ⊕ R, θ∗BSOUd)
∼ ∼

The map π1(EDiffθ(M)) −→ π1(EDiff+(M)) is surjective, because components of

Bun(TM, θ∗BSOUd) are contractible. Next, let us consider the map BO(d)〈m〉 →
BO(d)〈m− 1〉 for 2 ≤ m ≤ k. Its homotopy fiber F is given by

ΩK(πmBO(d),m) ' K(πmBO(d),m− 1) = K(πmBO,m− 1).

By our assumption on M there exists a lift of M → BO(d)〈m− 1〉 to BO(d)〈m〉. The

obstructions to the uniqueness up to homotopy of such a lift lies in the groups (cf.
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[Hat02, pp. 418])

Hn(M,πn(F )) ∼=

Hm−1(M,πmBO) if n = m− 1

0 else.

Since M is (k − 1)-connected and m ≥ 2 all these groups vanish and so the lift to

BO(d)〈m〉 is unique. From Lemma 1.2.6 and Lemma 1.2.7 we deduce that for every

[l̂BSO] ∈ π0(Bun(TM ⊕ R, θ∗BSOUd)) there exists a unique lift [l̂] ∈ π0(Bun(TM ⊕
R, θ∗Ud)). Therefore the map π0(EDiffθ(M)) −→ π0(EDiff+(M)) is injective and the

Proposition follows from the first half of the 5-Lemma.

Let us have a closer look at the case of B = BSpin(d). Let us recall the more

traditional description of Spin-structures (cf. [Ebe06, Chapter 3]): A Spin-structure

σ on a manifold M is a pair (P, α) consisting of a Spin(d)-principal bundle P and

an isomorphism α : P ×Spin(d) Rd
∼=−→ TM ⊕ R. An isomorphism of Spin-structures

σ0 = (P0, α0) and σ1 = (P1, α1) is an isomorphism β : P0
∼=−→ P1 of Spin(d)-principal

bundles over idM such that α1 ◦ (β ×Spin(d) idRd) = α0. If f : M → M is an orienta-

tion preserving diffeomorphism and σ = (P, α) is a Spin structure on M , we define

f∗σ := (f∗P, (df)−1 ◦ f∗α).

The first naive idea of a definition of DiffSpin(M,σ) is the following:

DiffSpin
naive(M,σ) := {f ∈ Diff+(M) : σ ∼= f∗σ} ⊂ Diff+(M).

However this cannot work as illustrated by the following example: Consider M = pt.

This has precisely one spin structure and one self-diffeomorphism, so DiffSpin
naive(pt) is a

point, and hence so is its classifying space BDiffSpin
naive(pt). Homotopy classes of maps

S1 → BDiffSpin
naive(pt) should classify spin structures on the circle (as point bundles over

S1). However, there are 2 non-isomorphic Spin-structures on the circle. So, this is not

the correct automorphism space of a Spin-manifold. Also note, that BDiffSpin(M) is

possibly not connected, so DiffSpin(M) cannot be a group.

The correct definition of DiffSpin(M,σ) is the following (cf. [Ebe06, Definition 3.3.3]):

Let σ0, σ1 be two Spin-structures ofM . A Spin-diffeomorphsim (M,σ0)
∼=−→ (M,σ1) is a

pair (f, f̂) consisting of an orientation preserving diffeomorphism f : M
∼=−→M and an

isomorphism f̂ of Spin-structures σ0 and f∗σ1. We denote by DiffSpin((M,σ0), (M,σ1))

the set of Spin diffeomorphisms (M,σ0)
∼=−→ (M,σ1). This gives rise to the groupoid
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DiffSpin(M) which has Spin structures on M as objects and morphisms sets are given

by DiffSpin((M,σ0), (M,σ1)). For a Spin-structure σ on M , we define

DiffSpin(M,σ) := DiffSpin((M,σ)(M,σ)).

We can now give an easier proof for and actually a strengthening of Proposition 1.2.8.

Proposition 1.2.9. Let M be a simply connected Spin manifold. Then the forgetful homomor-

phism DiffSpin(M,σ)→ Diff+(M) is surjective and its kernel has two elements.

Proof. Since M is simply connected, the Spin-structure σ of an oriented manifold

is unique up to isomorphism. So for every orientation preserving diffeomorphism

f : M
∼=−→M , there is an isomorphism σ

∼=−→ f∗σ, hence the map is surjective. The rest

follows from [Ebe06, Lemma 3.3.6].

It would be conceptually satisfying to also give a description of a groupoid Diffθ(M)

that has BDiffθ(M) as a classifying space and whose elements are related to diffeo-

morphisms. The correct one is the one which has bundle maps l̂ : TM ⊕ R → θ∗Ud

as objects. A morphism is a pair (f, L) consisting of a diffeomorphism f and a path

L of bundle maps connecting l̂0 and l̂1 ◦ df . However, concatenation of paths is only

associative up to homotopy, so one would need to consider this as an∞-groupoid. In

order to give a model for the mapping class group one does not need the language of

∞-categories, though.

Definition 1.2.10. For a θ-structure l̂ on Md−1 we define

Bθ(M, l̂) :=

{
(f, L) :

f : M
∼=−→M is a diffeomorphism

L is a homotopy of bundle maps l̂ ◦ df  l̂

}/
∼

where the equivalence relation is given by homotopies of f and L.

We want to compare Γθ(M, l̂) and Bθ(M, l̂). First note that BDiffθ(M) classifies M -

bundles with θ-structure. So, elements in Γθ(M, l̂) are precisely given by fiber bundles

over [0, 1] with θ-structures on the vertical tangent bundle that restricts to (M, l̂) over

the points {0, 1} ∈ [0, 1].

For a representative (f, L) of an element in Bθ(M, l̂) we get such a bundle E → [0, 1]

by gluing [0, 1
2 ]×M to [1

2 , 1]×M along f and the θ-structure is given by l̂ on [0, 1
2 ]×M

and by the rescaled path L on [1
2 , 1]×M . Replacing f and L by homotopic maps results
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in an isomorphic bundle E′ and so we get a map P : Bθ(M, l̂) −→ Γθ(M, l̂) defined by

P (f, L) = E.

There is also a map in the other direction. Let E → [0, 1] be an M -bundle with θ-

structure l̂E on the vertical tangent bundle of E. Since the interval is contractible, there

exists a diffeomorphism ψ : E
∼=−→ [0, 1]×M that fibers over the interval and restricts

to the identity on {0} ×M . We get a diffeomorphism ψ1 := ψ(1, ) of M . Furthermore,

Lt := (l̂E ◦ dψ−1
t )|{t}×M defines a path of bundle maps from l̂ to l̂ ◦ dψ1. We get a map

Q : Γθ(M, l̂)
∼=−→ Bθ(M, l̂) by Q(E) = (ψ−1

1 , L). This construction is invariant with

respect to isomorphism of the bundle E.

Proposition 1.2.11. The above constructions give mutually inverse group isomorphisms

between Γθ(M, l̂) and Bθ(M, l̂).

Proof. Let [f, L] ∈ Bθ(M, l̂). Then there is a diffeomorphism ψ : P (f, L)
∼=−→ [0, 1]×M

given by the identity on [0, 1
2 ]×M and by f−1 × id on [1

2 , 1]×M . Then ψ−1
1 = f and

the bundle homotopy constructed above is homotopic to L by contracting [0, 1
2 ]×M

and stretching [1
2 , 1]×M .

Now, let [E] ∈ Γθ(M, l̂). Let ψ : E
∼=−→ [0, 1]×M and Lt be as above. Then Q(ψ−1

1 , L)

is isomorphic to E by contracting [1
2 , 1]×M and stretching [0, 1

2 ]×M composed with

ψ−1.

Example 1.2.12. Since we usually will be interested in the case where θ is the (stabilized)

tangential 2-type of a high-dimensional manifold M , let us as have a closer look at the

case of B = BSpin(d) × BG. The map θ : BSpin(d) × BG → BO(d) factors through

the 3-connected cover θSpin : BSpin(d)→ BO(d) and we get

Bun(TM ⊕ R, θ∗Ud) = Bun(TM ⊕ R, θ∗SpinUd)×Map(M,BG).

So, a θ-structure l̂ on M is given by a Spin structure σ on M and a map M → BG. Let

ψ := [f, L] ∈ Bθ(M, l̂). Then f is an orientation preserving diffeomorphism of M and

L is the homotopy class of a path connecting the bundle maps l̂Spin, l̂Spin ◦ df : TM ⊕
R→ θ∗SpinUd together with the homotopy class of a path connecting the maps α and

α ◦ f : M → BG.

If G = π1(M,x) for some base-point x ∈ M , this means that the induced map

f∗ : π1(M,x) → π1(M,f(x)) is given by conjugation by a path γ : [0, 1] → M with
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γ(0) = x and γ(1) = f(x). We say that f acts on the fundamental group by an inner

automorphism in this case.

1.3 Cobordism groups

In this section we define the θ-structured cobordism set of manifolds with fixed bound-

ary. We compare it to the θ-structured cobordism group of closed manifolds. We

assume that all cobordisms are ε-collared for some ε.

Definition 1.3.1. Let θ : B → BO(d) be a once-stable tangential structure and let

Md−1
0 ,Md−1

1 be compact manifolds with (stabilized) θ-structures l0, l1. We define the

bordism set of manifolds with θ-structure and fixed boundary by

Ωθ
d

(
(M0, l̂0), (M1, l̂1)

)
:=
{

(W,ψ0, ψ1, ˆ̀)
}
/ ∼ .

Here, W is a d-manifold with boundary ∂W = ∂0W
∐
∂1W , ˆ̀∈ Bun(TW, θ∗Ud) is a

bundle map and ψi = (fi, Li), i = 0, 1 are θ-diffeomorphisms, i. e. fi : ∂iW → Mi are

diffeomorphisms and Li are homotopies of bundle maps (−1)i l̂i ◦ df ∼ ˆ̀|∂iW , where

−l̂1 denotes the bundle map l̂1 ◦ (id⊕ (−1)) : TM ⊕R→ TM ⊕R→ θ∗Ud. We call M0

the incoming boundary and M1 the outgoing boundary (see Figure 1.1).

∂0W ∂1W -M1M0
≅ ≅

W

FIGURE 1.1: A representative of [W ] ∈ Ωθd
(
(M0, l̂0), (M1, l̂1)

)
.

The arrows indicate the direction of the θ-structures.

The equivalence relation is given by the cobordism relation: We say that (W,ψ0, ψ1, `)

and (W ′, ψ′0, ψ
′
1, `
′) are cobordant if there exists a d+ 1-dimensional θ-manifold (X, `X)

with corners such that there exists a partition of ∂X =
⋃
i=0,3 ∂iX together with
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θ-diffeomorphisms

M0 × I ∼= ∂0X M1 × I ∼= ∂3X

W ∼= ∂2X W ′ ∼= ∂1X

such that θ-structures and diffeomorphisms fit together (see Figure 1.2).

X

W

W'

M1 x [0,1]M0 x [0,1]

FIGURE 1.2: The cobordism relation in Ωθd
(
(M0, l̂0), (M1, l̂1)

)
.

Remark 1.3.2. 1. Since θ is a fibration we can arrange the θ-structure on W so that

the θ-structures (−1)i l̂i ◦ dfi and ˆ̀|∂iW actually agree.

2. Let θ be once-stable. Ωθ
d((M, l̂), (M, l̂)) becomes a monoid via concatenation of

cobordisms and identifying them along the boundary diffeomorphisms, i. e.

(W ′, ψ′0, ψ
′
1, `
′) · (W,ψ0, ψ1, `) := (W ∪f ′0◦f−1

1
W ′, ψ0, ψ

′
1, ` ∪f̂ ′0◦f̂−1

1
`′).

We will later see that this monoid is actually is a commutative group (cf. Corollary

1.3.7). More generally, this gives rise to a category Ω̂θ
d with objects (M, l̂) and

morphism set Ωθ
d

(
(M0, l̂0), (M1, l̂1)

)
.

3. Note that one has a map Ωθ
d((M, l̂), (M, l̂)) → Ωθ

d(∅, ∅) =: Ωθ
d given by identi-

fying the equal boundaries of a cobordism W : M  M . This map gives an

isomorphism of groups (cf. Corollary 1.3.7 and the remark below it).

The following proposition will be very useful later on.

Proposition 1.3.3. Let θ be a once-stable tangential structure and let W d : M0  M1 be

θ-cobordism. Then there exists a θ-structure on W op : M1  M0 such that W ∪W op ∼
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M0 × [0, 1] rel M0 × {0, 1}. In particular, if W : ∅  M is a θ-nullbordism, the double

dW := W ∪W op is nullbordant and W op qW is cobordant to the cylinder on M .

Proof. Consider the manifold with corners W × I . We introduce new corners as in

Figure 1.3.

W x [0,1]

Wop
W

M0 x [0,1]
M0

M1

M0

M0

M0

M0
M1

FIGURE 1.3: Introducing corners to obtain the desired cobordism

Let us now construct the θ-structures1. Let θ : B → BO(d+ 1) be as in the definition of

once-stable. We get a θ-structure lW : TW ⊕ R → θ∗Ud+1. Since W ↪→ W × [0, 1] is a

homotopy equivalence there is a unique extension up to homotopy

TW ⊕ R θ

T (W × [0, 1])

lW

where the vertical map sends v ∈ R>0 to the inwards pointing vector. This gives a

θ-structure on W × I and by restriction a θ-structure on W op as θ is once-stable.

We obtain the following.

Corollary 1.3.4. Let θ be once-stable. Then the the category Ω̂θ
d is a groupoid. In particular

Ωθ
d

(
(M, l̂), (M, l̂)

)
is a group.

Now we prove another useful tool.

Proposition 1.3.5. Let θ be once-stable. Then the action of Ωθ
d on Ωθ

d

(
(M0, l0), (M1, l1)

)
given by disjoint union is free and transitive.

1This is adapted from [GRW14, Proof of Proposition 2.16].
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Proof. Since disjoint union is associative up to cobordism and disjoint union with the

emptyset is the identity and this really defines a group action.

If Ωθ
d

(
(M0, l0), (M1, l1)

)
= ∅ the statement is trivial. So let (L,ψL0 , ψ

L
1 , `L) : (M0, l̂0)  

(M1, l̂1) be a cobordism. Let ΦL : Ωθ
d −→ Ωθ

d

(
(M0, l0), (M1, l1)

)
be given by ΦL(V ) =

V q L. Also let

Φ̃L : Ωθ
d

(
(M0, l0), (M1, l1)

)
−→ Ωθ

d

be defined given by gluing in the cobordism (Lop, ψL1 , ψ
L
0 , `

op
L ) along the boundary as

follows: We concatenate with Lop and then identify the equal boundaries:

Ωθ
d

(
(M0, l0), (M1, l1)

)∪Lop

−→ Ωθ
d

(
(M0, l0), (M0, l0)

)
−→ Ωθ

d

We will prove the Proposition by showing that Φ and Φ̃ are mutually inverse bijections.

The easy part is

Φ̃(Φ([V ])) = Φ̃([V q L]) = [V q (L ∪ Lop)] = [V ]

by Proposition 1.3.3. It remains to show that (W ∪Lop)qL is cobordant to W . First we

note that (W,ψ0, ψ1) is diffeomorphic to (M0 × I ∪ψ0 W ∪ψ−1
1
M1 × I, id, id) and so it

suffices to consider the case that all boundary identifications are given by the identity.

We now decompose Φ̃L(W )q L = (W ∪ Lop)q L as follows:

V0 := M0 × [0, ε] ∪M1 × [1− ε, 1] V1 := L

V2 := Lop V3 := W

Note that

∂V0 = (M0 × {0})q (M0 × {ε})q (M1 × {1− ε})︸ ︷︷ ︸
=:∂+V0

q(M1 × {1})

∂V1 = M0 qM1 = ∂V2 = ∂V3

By identifying ∂+V0 and ∂V2 with ∂V1 and ∂V3 in different ways we obtain

V0 ∪ V1 = L V2 ∪ V3 = Lop ∪W

V0 ∪ V3 = W V2 ∪ V3 = Lop ∪ L = dL

We will now give a cobordism X : (V0 ∪ V1) q (V2 ∪ V3)  (V0 ∪ V3) q (V2 ∪ V1).
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FIGURE 1.4: Introducing corners at the boundary of Vi × [0, 1]

We construct this by taking Vi × I for every i = 0, 1, 2, 3, introducing corners at the

boundary (and at ∂+V ) respectively) as shown in Figure 1.4 and gluing the obtained

manifolds together along parts of the boundary as shown in Figure 1.5. The θ-structures

are given by l̂i ⊕ idR (the arrows in Figure 1.5 indicate the incoming and outgoing

boundary of X).

V0

V1

V1 V2

V2

V3

V3V0

FIGURE 1.5: The cobordism X : (V0 ∪ V1)q (V2 ∪ V3) (V0 ∪ V3)q (V2 ∪ V1)

Remark 1.3.6. Proposition 1.3.5 can also be proven using structured cobordism cate-

gories. The presented proof however is much more direct.

As a corollaries we get:

Corollary 1.3.7. Let (M, l) be a (d− 1)-dimensional θ-manifold. Then the map

Φ: Ωθ
d

∼=−→ Ωθ
d

(
(M, l̂), (M, l̂)

)
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given by (V, ˆ̀) 7→ (M × [0, 1] q V, id, id, (l̂ ⊕ idR) q ˆ̀) is an isomorphism of groups. In

particular, Ωθ
d

(
(M, l̂), (M, l̂)

)
is an abelian group.

Proof. It is a group homomorphism because

Φ(V qW ) = M × [0, 1] q V qW

= (M × [1, 2] q V ) ∪ (M × [0, 1] q W ) = Φ(V ) ∪ Φ(W ).

The rest follows from Proposition 1.3.5.

Remark 1.3.8. The inverse map is given by mapping (W,ψ0, ψ1) to the manifold ob-

tained by gluing ∂1W to ∂0W along the diffeomorphism ψ−1
0 ◦ ψ1.

Corollary 1.3.9. The map Γθ(M, l̂)→ Ωθ
d given by [γ] 7→ [Mγ ] is a homomorphism.

Proof. Consider γ : [0, 1] → BDiffθ(M) as a path from (M, l̂) to itself. We define the

mapping cylinder map by A : Γθ(M, l̂) → Ωθ
d(M,M), γ 7→ (γ∗UM,θ, id, id). Since the

bundle classified by γ0 ∗ γ1 is the same as the union of the bundles classified by γi, this

satisfies

A(γ0 ∗ γ1) = ((γ0 ∗ γ1)∗UM,θ, id, id)

= (γ∗0UM,θ ∪ γ∗1UM,θ, id, id)

= (γ∗0UM,θ, id, id) ∪ (γ∗1UM,θ, id, id) = A(γ0) ∪A(γ1).

Since the isomorphism Ωθ
d(M,M) → Ωθ

d is given by gluing the boundary, we have

Mγ = Φ̃(γ∗UM,θ) and hence

Mγ0∗γ1 = Φ̃(A(γ0 ∗ γ1)) = Φ̃(A(γ0))q Φ̃(A(γ1) = Mγ0 qMγ1 .

Remark 1.3.10. Using the model Bθ(M, l̂) for the mapping class group, we see that

the map A ◦ P : Bθ(M, l̂) → Ωθ
d(M,M) is given by (f, L) 7→ (M × [0, 1], id, (f, L)−1)

for P the map from Proposition 1.2.11. Note that since Ωθ
d(M,M) is commutative,

(f, L) 7→ (M × [0, 1], id, (f, L)) is a homomorphism as well.
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1.4 Morse theory

In this section we recall the basic notions from Morse theory and parametrized Morse

theory.

Definition 1.4.1. Let W d : M0  M1 be cobordism with collars. A Morse function

f : W → [0, 1] is a smooth function such that

1. It is collared, i. e. f−1([0, ε)) = [0, ε) ×M0, f−1((1 − ε, 1]) = (1 − ε, 1] ×M1 for

some ε > 0 and f(t, p) = t for t ∈ [0, ε) ∪ (1− ε, 1].

2. For every critical point p ∈W , d2fp has rank d. These points are called nondegen-

erate critical points.

The following is the well-known Morse-lemma, see for example [Mat02, Theorem

2.16].

Lemma 1.4.2. Let p ∈W be a nondegenerate critical point of a Morse function f . Then there

exists a chart k : U ⊂ Rd → W centered at p (i. e. 0 ∈ U and k(0) = p) and λ ∈ {0, . . . , d}
satisfying

f ◦ k(x1, . . . , xd) = f(p) +
λ∑
i=1

−x2
i +

d∑
i=λ+1

x2
i

We call k a Morse chart and λ the index of f at p.

Later on, we want to investigate the handle decompositions associated to two different

Morse functions. To this end, we need to understand how to compare Morse functions.

The space of all Morse functions is not connected in general which means in order to

connect two Morse functions by a path one has to allow further singularities.

Lemma 1.4.3 ([Igu88, Lemma 1.5, p.298]). Let W : M0  M1 be a cobordism and let

f : W → [0, 1] be a smooth function such that f−1([0, ε)) = [0, ε)×M0 and f−1((1−ε, 1]) =

(1− ε, 1]×M1 for some ε > 0. Assume that there also exists a critical point p ∈W of f such

that rank(d2fp) = d− 1. Then there exists a chart k : U ⊂ Rd →W centered at p such that

f ◦ k(x1, . . . , xd) = f(p) + r(x1) + q(x2, . . . , xd), where q =
∑λ

i=2−x2
i +

∑d
i=λ+1 x

2
i and

r : R→ R is a smooth function.

Definition 1.4.4. We call a singularity p ∈ W as in Lemma 1.4.3 an Al-singularity if

r(i)(0) = 0 for i ≤ l and r(l+1)(0) 6= 0 and we define λ− 1 to be the index of f at p. We

call an A2-singularity a birth-death-singularity. If all critical points of f are A1 or A2

singularities, we call f a generalized Morse function.
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Lemma 1.4.5 ([Igu88, Theorem 1.7, p. 301]). Let p be an Al singularity of f : W → [0, 1].

Then there exists a chart k : U ⊂ Rd →W centered at p such that

f ◦ k(x1, . . . , xd) = f(p) + xl+1
1 +

λ∑
i=2

−x2
i +

d∑
i=λ+1

x2
i

By abuse of notation, we again call k a Morse chart centered at p.

Definition 1.4.6. Let ft : W → [0, 1] be a path of generalized Morse functions and let p

be a birth-death-singularity of f0. Let k : Rd →W be a Morse chart centered at p. We

call p generically unfolded by ft if ∂2

∂t∂x1
ft(0) 6= 0.

Definition 1.4.7. Let h : I ×W → [0, 1] be a collared path of generalized Morse func-

tions, i. e.ht(x) = ht′(x) for all x in a neighbourhood of ∂W . We call this path generic,

if there exist disjoint finite subsets T0, T1 ⊂ I such that

1. h(t, ) is a Morse function for t /∈ T0.

2. For t ∈ T0, the function h(t, ) has precisely one birth-death-singularity which is

generically unfolded.

3. h(t, ) has distinct critical values for t /∈ T1.

4. If t ∈ T1 then h(t, ) has precisely 2 critical points p0, p1 with agreeing critical

values. These shall satisfy ∂
∂th(t, p0) 6= ∂

∂th(t, p1)

We call T = T0 ∪ T1 the set of singular times of ht.

Remark 1.4.8. For a path of generalized Morse functions there exists the so-called Cerf-

Kirby-graphic which depicts the movement of the critical values along the time axis

(See Figure 1.6)

0 1s0 s1 s2

FIGURE 1.6: A Cerf-Kirby-graphic
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Lemma 1.4.9 ([Igu88, Lemma 2.5, p. 308]). If p is a birth-death singularity of f0 generically

unfolded by ft, there exists an ε > 0, a chart k centered at p and path of generalized Morse

functions ht isotopic to ft by an isotopy supported in a small neighbourhood of p such that

ht ◦ k(x1, . . . , xd) = f(p) + x3
1 ± tx1 +

λ∑
i=2

−x2
i +

d∑
i=λ+1

x2
i

for t ∈ (−ε, ε).

The following Lemma is due to Cerf [Cer70]. Since the original source is in french, we

decided to give a proof in the appendix for convenience of author and reader.

Lemma A.2. Let h0, h1 : W → [0, 1] be Morse functions with distinct critical values. Then

there exists a generic path of generalized Morse functions connecting them.

1.5 Handle decompositions of cobordisms

In this section we discuss the relation between Morse functions on W and handle

decompositions of W . First, we give a model for attaching a handle. The one given in

[Per17, Construction 8.1] is convenient.

Construction 1.5.1 (Standard trace). Let ε ∈ (0, 1
4) be fixed and let k ∈ {0, . . . , d}. We

fix once and for all an O(k)×O(d− k)-invariant submanifold

Tk ⊂ [0, 1]×Dk ×Dd−k

with the following properties (see Figure 1.7 for a visualization)

1. (s, 0, 0) ∈ Tk if and only if s = 1
2 .

2. The projection Tk
pr−→ [0, 1] is a Morse function and (1

2 , 0, 0) is the only critical

point of this Morse function. Its index is k.

3. We have the following equalities for intersections

Tk ∩ ([0, ε)× Sk−1 ×Dd−k) = [0, ε)× Sk−1 ×Dd−k

Tk ∩ ((1− ε, 1]×Dk × Sd−k−1) = (1− ε, 1]×Dk × Sd−k−1

Tk ∩ ([0, 1]× Sk−1 × Sd−k−1) = [0, 1]× Sk−1 × Sd−k−1
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4. The boundary of Tk is given by

∂Tk = ({0} × Sk−1 ×Dd−k) ∪ ({1} ×Dk × Sd−k−1) ∪ ([0, 1]× Sk−1 × Sd−k−1).

We call Tk the standard trace of a k-surgery.

Dd-k

Dk

[0,1]

FIGURE 1.7: A standard trace.

Definition 1.5.2 (Trace of a surgery). LetM be a manifold and let ϕ : Sk−1×Dd−k ↪→M

be an embedding. We call such an embedding a k-surgery datum in M and we define

the trace of ϕ to be

tr (ϕ) :=
(

[0, 1]× (M \ im ϕ)
)
∪id[0,1]×ϕ Tk.

There is a Morse function hϕ : tr (ϕ)→ [0, 1] with precisely one critical point with value
1
2 and index k. We define Mϕ := h−1

ϕ (1) ∼= (M \ im ϕ) ∪ (Dk × Sd−k−1).

For a surgery datum ϕ inM there is an obvious reversed surgery datum ϕop : Sd−k−1×
Dk ↪→ Mϕ and there is a canonical diffeomorphism (Mϕ)ϕop ∼= M . We define the

attaching sphere of ϕ to be ϕ(Sk−1 × {0}) ⊂ M and the belt sphere of ϕ as ϕop({0} ×
Sd−k−1) ⊂Mϕ.

Definition 1.5.3. 1. Let W : M0  M1 be a cobordism and let ϕ : Sk−1 ×Dd−k ↪→
M1 be an embedding. We define the manifold W with a k-handle attached along ϕ

to be W ∪ tr (ϕ).

2. A handle decomposition of W : M0  M1 is a collection of manifolds N1, . . . , Nn,

embeddings ϕi : Ski−1 × Dd−ki ↪→ Ni for i = 1, . . . , n and diffeomorphisms
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f0 : M0
∼=−→ N1, fi : (Ni)ϕi

∼=−→ Ni+1 for i = 1, . . . , n − 1 and fn : (Nn)ϕn
∼=−→ M1

such that there exists a diffeomorphism rel M0,M1

W ∼= M0 × [0, 1] ∪f0 tr (ϕ0) ∪f1 tr ϕ1 ∪ · · · ∪ tr (ϕn−1) ∪fn M1 × [0, 1].

We call fi the identifying diffeomorphisms and ϕi the surgery data.

Remark 1.5.4. For a diffeomorphism f : M0
∼=−→M1 and a surgery datum ϕ in M0 there

exists a canonical induced diffeomorphism F : tr ϕ→ tr (f ◦ ϕ) that restricts to f on

the incoming boundary and to a diffeomorphism fϕ : (M0)ϕ → (M1)f◦ϕ satisfying

fϕ ◦ ϕop = (f ◦ ϕ)op on the outgoing boundary. Furthermore fϕ is equal to f on

M0 \ im ϕ.

In order to compare different handle decompositions of a manifold, we will now

describe the model for handle cancellation. Let W : M0  M1 be a cobordism which

has a handle decomposition with two handles2: Let ϕ : Sk−1 × Dd−k ↪→ M0 and

ϕ′ : Sk ×Dd−k−1 ↪→ (M0)ϕ be two surgery data such that the belt sphere of ϕ and the

attaching sphere of ϕ′ intersect transversely in a single point. By [Wal16, Theorem

5.4.3] there exists an embedding of an disk Dd−1 ∼= D ⊂M0 such that im ϕ ⊂ D and

im ϕ′ ⊂ Dϕ. Therefore it suffices to have a closer look at handle cancellation on the

sphere. Let M0 = D ∪D′ = Sd−1 where D′ is another disk. Let a ∈ Sd−k−1 and b ∈ Sk

such that ϕop(0, a) = ϕ′(b, 0) is the unique intersection point. Since the belt sphere of ϕ

and the attaching sphere of ϕ′ intersect transversally here, there is a disc Sk+ ⊂ Sk such

that ϕ′(Sk+ × {0}) = ϕop(Dk × {a}) after possibly changing the coordinates of D. Let

Sk− := Sk \ Sk+. Then ϕ′(Sk− × {0}) ⊂M \ im ϕ (see Figure 1.8).

φ'(Sk x {0})

φop({0} x Sd-k-1) φ'(Sk x {0})+

φ'(Sk x {0})-

φ(Sk-1 x Dd-k)

FIGURE 1.8

2For ease of notation we assume that f0 = idM0 and f1 = id(M0)ϕ .
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Because of transversality we may isotopy ϕ′ such that ϕ′(Sk− ×Dd−k−1) ⊂ M \ im ϕ.

Then ϕ(Sk−1 × Dd−k) ∪ ϕ′(Sk− × Dd−k−1) ∼= Dd−1 (cf. [Wal16, Lemma 5.4.2.]) and

also A := Sd−1\
(
ϕ(Sk−1 ×Dd−k) ∪ ϕ′(Sk− ×Dd−k−1)

) ∼= Dd−1. By choosing an iden-

tification A ∼= Dk × Dd−k−1 we have ϕ′(Sk− × Dd−k−1) ∪ A ∼= Sk × Dd−k−1. We see

that

Sd−1 =
(
ϕ(Sk−1 ×Dd−k) ∪ ϕ′(Sk− ×Dd−k−1)

)
∪A︸ ︷︷ ︸

∼=Sk×Dd−k−1

and hence we can change coordinates on Sd−1 by changing the embedding Dd−1 ↪→M

such that ϕ is the embedding of the first factor of the solid torus decomposition
ak : Sd−1

∼=−→ (Sk−1 × Dd−k) ∪ (Dk × Sd−k−1), i. e. ak ◦ ϕ = ι(Sk−1×Dd−k). We get an
induced map

akϕ : Sd−1ϕ

∼=−→ (Dk×Sd−k−1)∪(Dk×Sd−k−1) = Sk×Sd−k−1 = (Sk×Dd−k−1)∪(Sk×Dd−k−1).

Because of transversality we may isotope ϕ′ so that (akϕ) ◦ ϕ′ is equal to the inclusion

of the first factor in Sk ×Dd−k−1 ∪ Sk ×Dd−k−1. Then

(akϕ)ϕ′ : (Sd−1
ϕ )ϕ′

∼=−→ Dk+1 × Sd−k−2 ∪ Sk ×Dd−k−1

This is a solid torus decomposition of (Sd−1
ϕ )ϕ′ . We get a diffeomorphism Hk : Sd−1 ×

[0, 2]
∼=−→ tr (ϕ) ∪ tr (ϕ′) which fixes the strip D′ × [0, 2] ⊂ (Sd−1)× [0, 2] and the lower

boundary point-wise. We may also assume that Hk restricts on the upper boundary to

a diffeomorphism ηk : Sd−1
∼=−→ (Sd−1

ϕ )ϕ′ which translates (akϕ)ϕ′ into the solid torus

decomposition ak+1, i. e.
(
(akϕ)ϕ′ ◦ ηk

)
= ak+1. For every k ∈ {0, . . . , d} we fix the

diffeomorphisms Hk (and hence ηk) once and for all.

Next we will recall from [Mil65] how a Morse function gives rise to a handle decompo-

sition.

Construction 1.5.5 ([Mil65, pp. 28]). LetW : M0  M1 be a cobordism and let h : W →
[0, 1] be a Morse function with critical points p1, . . . , pn which have pairwise distinct

values c1 < · · · < cn and indices k1, . . . , kn. For ε ∈ (0,mini(c1, ci+1−ci, 1−cn)) we get3

Wi := h−1[ci−ε, ci+ε], Zi := h−1[ci+ε, ci+1−ε] so thatW = Z0∪W1∪Z1∪· · ·∪Wn∪Zn.

Let V be a gradient-like vector field for h, i. e. a vector field such that V · h > 0 away

from the critical points and near critical points it is equal to the gradient vector field of f

with respect to some background metric on W . Now Zi is a cobordism without critical

point and following the flow-lines of V gives a diffeomorphism αi : h
−1(ci−1 + ε)

∼=−→
3Here we have the convention that c0 := −ε, cn+1 = 1 + ε.
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h−1(ci−ε). Also we get a surgery embedding ϕi into h−1(ci−ε) and a diffeomorphism

βi : tr ϕi
∼=−→ Wi as follows: Let g : Dd

δ → W be a Morse chart centered at pi. For

(a, b) ∈ Ski−1×Dd−ki we define ϕi(a, b) by taking g( δ2a,
δ
2b) and following the flow-line

of V until we reach h−1(ci−ε). For (s, p) ∈ [0, 1]×(h−1(ci−ε)\ im ϕ), let αi(s, p) be the

unique point q lying on the flow-line of V through p which satisfies h(p) = ci − ε+ 2sε

and for (s, a, b) ∈ Tki , the value βi(s, a, b) is similarly defined to be the unique point q

lying on the flow-line4 through g( δ2a,
δ
2b) that also satisfies h(p) = ci − ε+ 2sε.

Now we can give a handle decomposition ofW relative toM0: LetNi := h−1(ci−ε), ϕi
as above and let f0 := α0 and fi := αi ◦ βi for i ≥ 1. This gives a handle decomposition

of W .

Remark 1.5.6. If g′ is a different coordinate neighbourhood of W at pi, g−1 ◦ g′ is a

diffeomorphism of the disk which preserves 〈x1, . . . , xki〉 and 〈xki+1, . . . , xd〉 and hence

it is isotopic to an element inO(k)×O(d−k). Since V is unique up to isotopy, a different

choice of V gives isotopic surgery embeddings ϕi and identifying diffeomorphisms fi.

If ht is a path of Morse functions with distinct critical points, the difference of handle

decompositions for h0 and h1 is the following: Critical points can be moved around

but their order cannot be changed nor can they be cancelled. This means that we get

isotopic surgery data ϕi and isotopic diffeomorphisms fi.

Proposition 1.5.7. Any two handle decompositions of W only differ by a finite sequence of

the following moves:

1. An identifying diffeomorphism is replaced by an isotopic one.

2. A surgery datum is replaced by an isotopic one.

3. A k-surgery datum is precomposed with an element A ∈ O(k)×O(d− k).

4. The order of two surgery data with disjoint images is changed.

5. Let ϕ and ϕ′ are k- and (k + 1)-surgery data such that the belt sphere of ϕ and the

attaching sphere of ϕ′ intersect transversally in a single point. Then the two handles are

replaced by the identifying diffeomorphism id # ηk.

Proof. First let h0 and h1 be any two Morse functions on W : M0  M1 with the

number of critical values denoted by m0 and m1, respectively. By an isotopy through

Morse functions with distinct critical values, we may assume that the critical values

4If (a, b) 6= (0, 0), this flow-line is unique.
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are 1
2m0

, 3
2m0

, . . . , 2m0−1
2m0

and 1
2m1

, 3
2m1

, . . . , 2m1−1
2m1

, respectively. By Lemma A.2 there

exists a generic path of generalized Morse functions connecting h0 and h1. Let T =

{t1, . . . , tk} ⊂ [0, 1] denote the set of singular times, fix ε < 1
2 mini=2,...,k{t1, ti−ti−1, 1−

tk} and let Tε := ∪ki=1(ti − ε, ti + ε). Outside of Tε, ht is a path of Morse functions with

distinct critical values. This is described in Remark 1.5.6 and is covered by relations 1

and 2. By isotoping ht we may further assume that it has the following property: If

t /∈ Tε and ht has m critical values, then their values are 1
2m ,

3
2m , . . . ,

2m−1
2m . The effect

of this isotopy on the Cerf-Kirby-graphic is shown in Figure 1.9.

0 1

1

0 1

1

FIGURE 1.9: Left: The Cerf-Kirby-graphic associated to a generic path of generalized
Morse functions. Tε is the grey region.

Right: The Cerf-Kirby-graphic for the isotoped path of generalized Morse functions.

We now consider this problem locally in t, i. e. we only have to examine what happens

at a singular time tj . We may assume that htj−ε has either 2 critical points with value 1
4

and 3
4 or none at all. The same holds for htj+ε. There are 2 possibilities: Either htj has

two critical points with the same value or it has a birth-death-singularity. In the former

case this means that the critical values interchange (since critical values are isolated, we

may assume the surgery data are disjoint). Now let p be a death-singularity (the case

of a birth-singularity can be dealt with completely analogously). Since p is generically

unfolded by ht, by Lemma 1.4.9 there exists a δ > 0 and a Morse chart g : Dd → W

such that for t− tj < δ we have

ht(g(x1, . . . , xd)) = x3
1 − (tj − t) · x1 +

k∑
i=2

−x2
i +

d∑
k+1

x2
i + const.

Now, for t < tj there are two critical points of ht ◦ g, namely x± := (±√tj − t, 0, . . . , 0)

of index k and k + 1 respectively. In order to get Morse charts g± for x± it suffices to
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change g in the first variable, i. e. there exist diffeomorphisms ξt± : R ∼= R such that

ht(g(ξt±(x1), x2, . . . , xd)︸ ︷︷ ︸
=:gt±(x1,...,xd)

) = ±x2
1 + ht(g(0, x2, . . . , xd))

near x±. Let ϕt−, ϕt+ be the respective surgery embeddings. The belt sphere of ϕt− and

the attaching sphere of ϕt+ are given by

ϕt−(x1, x2, . . . , xk−1︸ ︷︷ ︸
=:v′

, 0, . . . , 0) = gs+(
δ

2
· x1,

δ

2
· v′, 0, . . . , 0)

ϕt+(x1, 0, . . . , 0, xk, . . . , xd︸ ︷︷ ︸
=:v

) = gs+(
δ

2
· x1, 0, . . . , 0,

δ

2
· v)

and hence they intersect transversely in a single point. So there exists a disk Dd−1 ⊂
M0 such that im ϕ

tj−ε
− ⊂ Dd−1 and im ϕ

tj−ε
+ ⊂ Dd−1

ϕ
tj−ε
−

and a diffeomorphism W ∼=

tr ϕtj−ε− ∪ tr ϕtj−ε+ . Since htk+ε has no critical points the two handles are cancelled and

we get a diffeomorphism id #∂ Hk : M0 × [0, 2]
∼=−→ tr ϕtj−ε− ∪ tr ϕtj−ε+ .

Note that for any handle decomposition of W there exists a Morse function h on W

such that Construction 1.5.5 yields this decomposition.

1.6 The 2-index theorem of Hatcher and Igusa

Definition 1.6.1. We defineH(W ) to be the space of generalized Morse functions onW .

For i ≤ j ∈ {0, . . . , d} we denote byHi,j(W ) the space of generalized Morse functions

such that non degenerate critical points have index in {i, . . . , j} and A2-singularities

have index in {i, . . . , j − 1}.

LetW d : M0  M1 be a cobordism. In this section we will prove the following theorem.

Theorem 1.6.2. Let d ≥ 7 and let M1 ↪→ W be 2-connected. Then the space H0,d−3(W )

is path-connected. If furthermore M0 ↪→ W is 2-connected as well, the space H3,d−3(W ) is

path-connected. In particular, there exists a Morse-function without critical values of index

{d− 2, d− 1, d} or {0, 1, 2, d− 2, d− 1, d} respectively.

This follows from the parametrized handle exchange theorem. It was first proven by

Hatcher [Hat75] “in a short and elegant paper which ignores most technical details”
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[Igu88, p. 5]. A complete and rigorous proof has been given by Igusa in [Igu88]. Note

that there is an index shift: Igusa considers n+ 1-dimensional cobordisms, whereas

our cobordisms are d-dimensional.

Parametrized Handle Exchange Theorem ([Igu88, p. 211, Theorem 1.1]). Let i, j, k ∈ N
and assume that

1. (W,M0) is i-connected,
2. j ≥ i+ 2,
3. i ≤ d− k − 2−min(j − 1, k − 1),
4. i ≤ d− k − 4.

Then the inclusion Hi+1,j(W ) ↪→ Hi,j(W ) is k-connected. There is a dual version of this:

Assume that

1. (W,M1) is d− j-connected,
2. j ≥ i+ 2,
3. d− j ≤ d− k − 2−min(j − 1, k − 1),
4. d− j ≤ d− k − 4.

Then the inclusionHi,j−1(W ) ↪→ Hi,j(W ) is k-connected.

Proof of Theorem 1.6.2. Consider the following chain of maps

H3,d−3(W ) H2,d−3(W ) H1,d−3(W )

H0,d−3(W )

H0,d−2(W )H0,d−1(W )H(W )

If M1 ↪→W is 2-connected and d ≥ 7, the last three maps are 1-connected. If M0 ↪→W

is 2-connected, the first three maps are 1-connected as well. The theorem follows as

H(W ) is connected.

Combining this with the work from the previous section we are able to compare

different handle decomposition with index constraints on the surgery data.

Definition 1.6.3. Let d ≥ 7. A cobordism W = (W d, ψ0, ψ1) : M0  M1 is called

admissible if ψ−1
1 : M1 ↪→ W is 2-connected. An admissible handle decomposition is a

handle decomposition where all surgery data ϕi : Ski−1×Dd−ki ↪→ Ni satisfy ki ≤ d−3.
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Proposition 1.6.4. Let W : M0  M1 be an admissible cobordism. Then any two admissible

handle decompositions of W only differ by a finite sequence of the 5 moves from Proposition

1.5.7 with the following difference:

5’. Let k ≤ d− 4 and let ϕ and ϕ′ be k- and (k + 1)-surgery data such that the belt sphere

of ϕ and the attaching sphere of ϕ′ intersect transversally in a single point. Then the two

handles are replaced by the identifying diffeomorphism id # ηk.

Let us close this chapter by recalling the following Lemmas that make it possible

to translate restrictions on the indices in a handle decomposition into conditions on

tangential structures.

Lemma 1.6.5 ([Wal71, Theorem 3], see also [Sma62]). Let r ≥ 0 and let d ≥ max{r +

4, s+ 4, r + s+ 2}. Let W d : M0 →M1 be a cobordism (of not necessarily closed manifolds

Mi) such that (W,M0) is r-connected and (W,M1) is s-connected for i = 0, 1. Then there

exists a handle decomposition of W without handles of indices 0, 1, . . . , r, d− s, . . . , d− 1, d.

In particular, if d ≥ 6 and (W,Mi) is 2-connected, there exists a handle decomposition of W

without handles of indices 0, 1, 2, d− 2, d− 1, d.

Remark 1.6.6. 1. In [Wal71] this Lemma is only stated for the case that (X,W0) is

2-connected and d ≥ 5. The proof however shows that the symmetrical statement

above is true for d ≥ 6 because in this case there are enough middle dimensions

available.

2. This also follows from the Parametrized Handle Exchange Theorem for k = 0.

Lemma B.4 ([Kre99, Proposition 4], [HJ13, Proposition, Appendix III]). Let θ : B →
BO(d) be a tangential structure, with B of type Fn. Let W d : M0  M1 be a θ-cobordism

and let M1 → B be n-connected. If n ≤ d
2 − 1, there exists a θ-cobordism W ′ : M0  M1

such that (W ′,M1) is d-connected. If M0 → B is also n-connected, there exists a θ-cobordism

W ′ : M0  M1 such that (W ′,Mi) is n-connected for i = 0, 1. Furthermore W ′ is θ-bordant

to W relative to the boundary.

Remark 1.6.7. Again, this Lemma is only stated in [Kre99] and [HJ13] without the

second half. This is why we decided to give a proof in the appendix.
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1.7 The spaceR+(M)

In this section we introduce the space of metrics of positive scalar curvature and

explain its topology. Afterwards we will state the famous surgery theorem of Gromov–

Lawson–Schoen–Yau and its generalization of Chernysh along with a few implications

thereof.

Definition 1.7.1. We denote byR(M) to be the set of all Riemannian metrics on M .

We want to endow the set R(M) with a topology. Let us recall the definition of the

C∞-topology (cf. [Hir76, pp.34]). Let M,N be smooth manifolds. Let f : M → N be a

smooth map and let α : U → Rn, β : V → Rm be charts of M and N respectively. Let

K ⊂ U be compact such that f(K) ⊂ V and let ε > 0. We define N (f ;ϕ,ψ,K, ε) to be

the set of smooth functions f ′ with f ′(K) ⊂ ψ(V ) such that∥∥∥dk(ψ ◦ f ◦ ϕ−1)(x)− dk(ψ ◦ f ′ ◦ ϕ−1)(x)
∥∥∥ ≤ ε

for all x ∈ K and all k ≥ 0.

Definition 1.7.2. The weak C∞-topology on C∞(M,N) is the one which has the collec-

tion of sets N (f ;ϕ,ψ,K, ε) as a subbasis.

Remark 1.7.3. For M compact, the weak C∞-topology on C∞(M,N) can be character-

ized as follows: A sequence of smooth functions fn converges to a smooth function f

if for all k ≥ 0 the derivatives f (k)
n converge point-wise to f (k).

Since a Riemannian metric is a fiberwise scalar product, it can be thought of as a

section of the bundle Sym2(T ∗M) of symmetric bilinear forms on M . So, R(M) ⊂
C∞(M,Sym2T ∗M) andR(M) becomes a topological space via the subspace topology.

Let (M, g) be a Riemannian manifold. We denote by scalg ∈ C∞(M) the scalar

curvature of g.

Definition 1.7.4. We define the space of metrics of positive scalar curvatureR+(M) to be

the open subspace of R(M) which contains those metrics whose scalar curvature is

strictly positive everywhere.

Definition 1.7.5. Let M and N be compact manifolds of dimension d− 1 ≥ 0 and let

φ : N ↪→M be an embedding. For a metric g on N , we define

R+(M,φ; g) := {h ∈ R+(M) : φ∗h = g}.
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For N =
∐n
i=1 S

ki−1×Dd−ki and g = gki−1
◦ +gd−kitor we writeR+(M,φ) := R+(M,φ; g).

Here, g◦ denotes the round metric and gtor a torpedo metric5. If there is no chance of

confusion, we will omit the dimension of these metrics.

Now, let Md−1 be a compact manifold and let φ : Nk−1 ↪→ M be an embedding of a

compact manifold N with trivial normal bundle into M . Let gN be a metric on N such

that scal(gN + gtor) > 0.The following is the well-known Gromov–Lawson–Schoen–

Yau surgery theorem (cf. [GL80] and [SY79]).

Theorem 1.7.6. R+(M) 6= ∅ ⇐⇒ R+(M,φ; gN + gtor) 6= ∅.

Remark 1.7.7. The statement of this theorem can be strengthened to hold for a discon-

nected manifold N where components possibly have different dimensions: Let M

be a d − 1-manifold, and let Ni be closed manifolds of dimension ki − 1, let gNi be

metrics on Ni such that scal(gNi + gtor) > 0 and let d − ki ≥ 3 for all i. Let further

N :=
∐n
i=1Ni×Dd−ki , g :=

∐n
i=1 gNi +gtor and let φ : N ↪→M be an embedding. Then

R+(M) 6= ∅ ⇐⇒ R+(M,φ; g) 6= ∅.

In [GL80] Gromov–Lawson used this result to determine which simply connected

non-Spin manifolds admit a metric of positive scalar curvature. Later, the Spin-case

was solved by Stolz [Sto92].

There is the following generalization which is originally due to Chernysh [Che04b]

and has been first published by Walsh [Wal13]. A detailed exposition of Chernysh’s

proof can be found in [EF18]. Let M,N,ϕ and g as in Remark 1.7.7.

Theorem 1.7.8 (Parametrized Surgery Theorem [Che04b, Theorem 1.1], [Wal13, Main

Theorem]). The map

R+(M,ϕ; g) ↪→ R+(M)

is a weak homotopy equivalence. In particular, if M1 is obtained from M0 by a surgery along

ϕ : Sk−1 ×Dd−k ↪→M0 of index k ≤ d− 3 then there exists a zig-zag of maps

R+(M0)
'←↩ R+(M0, ϕ)

∼=−→ R+(M1, ϕ
op) ↪→ R+(M1).

If furthermore k ≥ 3, the rightmost map in this composition is also a weak equivalence and we

obtain a zig-zag of weak equivalences fromR+(M0) toR+(M1).

5A torpedo metric on Dd−k is an O(d− k)-invariant metric of positive scalar curvature that restricts to
the round metric on the boundary. For precise definitions see [Che04b], [Wal11] or [EF18].
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There is an application to cobordism theory:

Theorem 1.7.9 ([Wal13, Corollary 4.2], [EF18, Theorem 1.5]). Let d ≥ 6, let θ : B →
BO(d) be a fibration and letM0,M1 be θ-manifolds of d−1 such that the underlying structure

map l : Mi → B is 2-connected for i = 0, 1. If M0 and M1 are θ-cobordant, thenR+(M0) '
R+(M1).

Remark 1.7.10. The space R+(M) is homotopy equivalent to a CW -complex (see

[Pal66, Theorem 13]). By Whitehead’s theorem, a weak homotopy equivalence of

CW -complexes is an actual homotopy equivalence. Therefore we may assume that

weak homotopy equivalences ofR+(M) have actual homotopy-inverses.

Sometimes, we need to work with manifolds with boundary. Let V be a manifold

with boundary ∂V =: N and let c : N × [0, ε) ↪→ V be a collar of the boundary. We

defineR+(V )ε to be the space of all psc metrics on V such that c∗g = h+ dt2 for some

h ∈ R(N). Since scal h+ dt2 = scal h, the scalar curvature of h is positive and we get

a restriction map

res : R+(V )ε → R+(N)

which is a quasifibration by [Che04a, Theorem 1.1] and a Serre-fibration by [EF18,

Theorem 1.1].

Remark 1.7.11. If we would consider non-collared metrics, restricting to the boundary

would not yield a psc-metric: D3 carries a metric of positive scalar curvature and so

does every 3-dimensional subspace. Embed a full torus D2 × S1 in D3. This has a

psc metric but its boundary is a 2-torus which cannot admit one by the Gauss–Bonnet

theorem.

By [BERW17, Lemma 2.1] the homotopy type of R+(V )ε does not depend on ε and

in fact R+(V )ε → colim
ε→0

R+(V )ε := R+(V ) is a weak homotopy equivalence. For

h ∈ R+(N) we writeR+(V )h := res−1(h) and if V : M0  M1 is a cobordism, then we

writeR+(V )h0,h1
:= res−1(h0 q h1).

As another application of the generalized surgery theorem, Walsh proved the following

in his thesis.

Lemma 1.7.12 ([Wal11, Theorem 3.1]). Let (W,ψ0, ψ1) : M0  M1 be a cobordism such

that ψ−1
1 is 2-connected and let g0 ∈ R+(M0). Then, there exists a metric G ∈ R+(W )

extending ψ∗0g0.





2
Decomposition of cobordisms

2.1 Cobordism categories

Geometric cobordism theory has had a great revival in the past 2 decades, starting

with the proof of the Mumford-conjecture by Madsen–Weiss [MW07] and its general-

ization to higher dimensions by Galatius–Randal-Williams [GRW14]. In this section

we recall the definition of the cobordism category Cobd and we give a different model

for π0(Cobd).

Definition 2.1.1 ([GRW10, Definition 3.7 ]). We define the cobordism category Cobd as

follows:

objCobd
:= {M : M ⊂ R∞−1 is a closed (d− 1)-dimensional manifold}

morCobd
(M0,M1) := {(W, t)}

where t ∈ R>0 and W ⊂ [0, t]×R∞−1 is a compact d-manifold such that there exists an

ε > 0 withW ∩([0, ε)×R∞−1) = [0, ε)×M0 andW ∩((t−ε, t]×R∞−1) = (t−ε, t]×M1.

Composition is given by

(W ′, t′) ◦ (W, t) := (W ∪ (W ′ + t), t′ + t)

31
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where +t means the obvious shift map. We turn this into a nonunital topological

category by imposing the objects carry the discrete topology and morphism sets are

topologized via

morCobd
(M0,M1) ∼=

∐
[W ]

EDiff∂(W )/Diff∂(W )× R>0

where W runs over all diffeomorphism classes of compact collared d-cobordisms

from M0 to M1. Here we use the model EDiff∂(W ) := Emb∂(W, [0, 1]× R∞−1) which

denotes all embeddings of W which are fixed near the boundary.

Remark 2.1.2. This is essentially the same definition as in [GRW10] except for taking

the discrete topology on objects. This however does not affect the homotopy type of

their classifying spaces (see [ERW17b, Theorem 5.2 and p. 23]).

Definition 2.1.3. Let C be a topological category. We define π0(C) to be the category

with objects π0(objC) and morphisms π0(morC).

Definition 2.1.4. Let Bordd be the category given by:

objBordd
:= {M is a closed (d− 1)-dimensional manifold}

morBordd
(M0,M1) := {(W,ψ0, ψ1)}/ ∼

where W is a d-dimensional manifold with boundary ∂W = ∂0W
∐
∂1W , the maps

ψi : ∂iW
∼=−→ Mi, i = 0, 1 are diffeomorphisms and (W,ψ0, ψ1) ∼ (W ′, ψ′0, ψ

′
1) if there

exists a diffeomorphism F : W →W ′ such that ψi = ψ′i ◦ F |∂iW for i = 0, 1. Composi-

tion is given by gluing

(W ′, ψ′0, ψ
′
1) ◦ (W,ψ0, ψ1) = (W ∪(ψ′0)−1◦ψ1

W ′, ψ0, ψ
′
1),

where for a diffeomorphism f : ∂1W
∼=−→ ∂0W

′ we denote by W ∪f W ′ the manifold

obtained from W qW ′ by identifying ∂1W and ∂0W
′ along f .

Remark 2.1.5. In Bordd the identity on M0 is given by (M0 × [0, 1], id, id).

Proposition 2.1.6. The functor F : π0(Cobd) → Bordd given by [W, t] 7→ (W, id, id) is an

equivalence of categories.

Proof. F is well-defined and faithful because (W, t) and (W ′, t′) lie in the same com-

ponent if and only if they are diffeomorphic relative to the boundary. F is essentially
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surjective by the Whitney embedding theorem and full because there is a diffeomor-

phism (M0 × [0, 1] ∪ψ−1
0
W ∪ψ1 M1 × [0, 1], id, id)

∼=−→ (W,ψ0, ψ1).

Let Diff denote the groupoid with the same objects as Bordd and morphism spaces

given by morDiff(M0,M1) = Diff(M0,M1).

Proposition 2.1.7. The map f 7→ (M0 × [0, 1], id, f) defines a functor Diff −→ Bordd.

Proof. Let f ∈ Diff(M0,M1) and g ∈ Diff(M1,M2). Then a diffeomorphism

(M0 × [0, 2], id, g ◦ f)
∼=−→(M0 × [0, 1] ∪f M1 × [1, 2], id, g)

= (M1 × [1, 2], id, g) ◦ (M0 × [0, 1], id, f)

is given by idM0×[0,1] ∪ (f × id[1,2]).

2.2 The surgery datum category

We recall the following method to construct a category. For details see [Mac71, pp. 48].

Definition 2.2.1. A graph is a tupel (O,A, ∂0, ∂1), where O and A are sets called object

set and arrow set and ∂0, ∂1 are maps A ⇒ O. We say that two arrows f, g ∈ A are

composable if ∂0g = ∂1f .

Definition 2.2.2. Let G = (O,A, ∂0, ∂1) be a graph. We define the category C(G) to

have elements of O as objects and morphisms of C(G) are (possibly empty) strings of

composable morphisms of A. We call C(G) the free category generated by G.

Next we recall the notion of a quotient category.

Proposition 2.2.3 ([Mac71, p. 51, Proposition 1]). 1. Let C be a small category and let

R be a binary relation, i. e. a map that assigns to each pair (a, b) of objects a subset

of morC(a, b)2. Then, there exists a category C/R with object set objC and a functor

Q : C → C/R (which is the identity on objects) such that

(a) If (f, f ′) ∈ R(a, b) then Qf = Qf ′.

(b) If H : C → D is a functor such that (f, f ′) ∈ R(a, b) implies Hf = Hf ′, then

there exists a unique functor H ′ : C/R→ D such that H ′ ◦Q = H .
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C/R is called the quotient category. It is unique up to equivalence of categories.

2. We call R a congruence if for every pair of objects (a, b), the set R(a, b) gives an

equivalence relation and R respects composition, i.e. if (f, f ′) ∈ R(a, b) and g : a′ → a,

h : b → b′, then (hfg, hf ′g) ∈ R(a′, b′). If R is a congruence, then morphism sets

morC/R(a, b) of C/R are given by dividing out the equivalence relation R(a, b) on

morC/R(a, b).

The main goal of this chapter is to give a presentation of Bordd, i.e. a graphG, a relation

R and an equivalence of categories C(G)/R
∼=−→ Bordd. Let us first construct the graph

G. Objects in O are the objects of Bordd and arrows will be given by diffeomorphisms

and elementary cobordisms:

1. For every diffeomorphism f : M0 →M1 there is an arrow If ∈ A connecting M0

and M1.

2. For every surgery datum ϕ in M there is an arrow Sϕ ∈ A connecting M and

Mϕ.

Next, we need to construct the relation R on C(G). Recall that for a diffeomorphism

f : M → M ′ and a surgery datum ϕ in M there exists a canonical induced diffeo-

morphism fϕ : Mϕ → M ′f◦ϕ. Also, if ϕ and ϕ′ are two surgery embeddings into M

with disjoint images, there is an induced obvious surgery embedding ϕ′ϕ on Mϕ and

(Mϕ)ϕ′ϕ = (Mϕ′)ϕϕ′ . Now, let R be the relation on morphism sets of C(G) generated by

the following:

1. Iid = id.

2. If f : M0
∼=−→M1 and g : M1

∼=−→M2 are diffeomorphisms, then Ig ◦ If = Ig◦f .

3. Let f : M0
∼=−→M1 and let ϕ be a surgery embedding into M0. Then Sf◦ϕ ◦ If =

Ifϕ ◦ Sϕ.

4. If f, f ′ : M
∼=−→M ′ are isotopic, then If = If ′ .

5. If A ∈ O(k)×O(d− k), then Sϕ = Sϕ◦A.

6. If ϕ,ϕ′ are two surgery embeddings intoM with disjoint images, then Sϕϕ′ ◦Sϕ′ =

Sϕ′ϕ ◦ Sϕ.

7. Let ϕ be a k-surgery datum in M and ϕ′ a (k + 1)-surgery datum in Mϕ such

that the belt sphere of ϕ and the attaching sphere of ϕ′ intersect transversely in a

single point. Then Sϕ′ ◦ Sϕ = Iid # ηk , where ηk is the diffeomorphism described

Section 1.5, below Remark 1.5.4.
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Remark 2.2.4. For isotopic surgery embeddings ϕ and ϕ′ we get a diffeotopy H of M

such that H0 = id and H1 ◦ ϕ = ϕ′ by the isotopy extension theorem. Then

Sϕ′ = SH1◦ϕ ◦ IH0 = SH1◦ϕ ◦ IH1 = I(H1)ϕ ◦ Sϕ.

Definition 2.2.5. We define the surgery datum category Xd to be C(G)/R and Q : C(G)→
Xd shall denote the projection functor.

2.3 A presentation of the cobordism category

In this section we prove that the surgery datum gives a presentation of the category

Bordd. This is the main result of this chapter.

Theorem 2.3.1. Let P : C(G) → Bordd denote the functor which is the identity on objects

and is given on morphisms by

1. For f : M0 →M1, If is mapped to (M0 × [0, 1], id, f) ∼= (M1 × [0, 1], f−1, id)

2. For a surgery datum ϕ in M , Sϕ is mapped to (tr (ϕ), id, id).

Then P descends to a functor P : Xd → Bordd which is an equivalence of categories.

Proof. First we check well-definedness. By Proposition 2.2.3 it suffices to show that P

respects the relations of Xd.

1. (M0 × [0, 1], id, id) is the identity.

2. (M1 × [0, 1], id, f) ◦ (M0 × [0, 1], id, g) := (M0 × [0, 1] ∪g M1 × [0, 1], id, f)
∼=−→ (M0 × [0, 2], id, f ◦ g)

and the diffeomorphism is given by the identity on M0 × [0, 1] and by the map

(p, t) 7→ (g−1(p), t+ 1) for (p, t) ∈M1 × [0, 1].

3. Let ϕ be a surgery embedding into M0 and let f : M0
∼=−→ M1 be a diffeomor-

phism.

P (Ifϕ ◦ Sϕ) = (tr (ϕ) ∪ (M0)ϕ × [0, 1], id, fϕ)

P (Sf◦ϕ ◦ If ) = ([0, 1]×M0 ∪f tr (f ◦ ϕ), id, id)

We will show that both of these are diffeomorphic to X := (M0 × [0, 1] ∪ tr ϕ ∪fϕ
(M1)f◦ϕ × [0, 1], id, id). The diffeomorphism X

∼=−→ P (Ifϕ ◦ Sϕ) is given by
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shrinking M0 × [0, 1] ∪ tr ϕ to tr ϕ and by fϕ × id on (M0)ϕ × [0, 1]. Recall that

there is a canonical diffeomorphism F : tr ϕ
∼=−→ tr (f ◦ ϕ). The diffeomorphism

X
∼=−→ P (Sf◦ϕ ◦ If ) is given by the identity on M0 × [0, 1], F on tr (ϕ) and by

shrinking the collar of (M1)f◦ϕ.

4. Let ft : M0
∼=−→ M1 be a diffeotopy. Then we get a diffeomorphism F : ([0, 1] ×

M0, id, f0)
∼=−→ ([0, 1]×M0, id, f1) given by F (t, x) = f−1

t ◦ f0(x).

5. For every A ∈ O(k) × O(d − k), ϕ ◦ A is just a reparametrization of ϕ and

hence this does not change tr (ϕ) since the standard model was chosen to be

O(k)×O(d− k)-invariant (cf. Construction 1.5.1).

6. Let ϕ,ϕ′ be surgery embeddings into M with disjoint images and let U,U ′ be

disjoint neigbourhoods of im ϕ, im ϕ′ in M . Let F : [0, 2]×M
∼=−→ [0, 2]×M be a

diffeomorphism such that

(a) F |[0, ε
2

)×M∪(2− ε
2
,2]×M = id

(b) F (t, x) = (t+ 1, x) for 1− ε1 > t > ε1 and x ∈ U
(c) F (t, x) = (t− 1, x) for 2− ε1 > t > 1 + ε1 and x ∈ U ′

Then, F induces a diffeomorphism F : tr (ϕ) ∪ tr (ϕ′ϕ) ∼= tr (ϕ′) ∪ tr (ϕϕ′) which

is the identity on a collar of the boundary.

7. This is precisely the situation discussed below Remark 1.5.6.

Therefore there is an essentially surjective functor P : Xd → Bordd. Every cobordism

admits a handle decomposition (see Construction 1.5.5) and hence this functor is full.

It remains to show that it is faithful. This follows from Proposition 1.5.7: Any two

preimages of a cobordism W under P only differ by a finite sequence of the seven

relations of Xd.

Definition 2.3.2. Let a, b ∈ {−1, 0, 1, . . . }. We define:

1. We define Borda,bd ⊂ Bordd to be the wide1 subcategory defined by the following:

morBorda.b
d

(M0,M1) contains those morphisms (W,ψ0, ψ1) where ψ−1
0 : M0 ↪→W

is a-connected and ψ−1
1 : M1↪→W is b-connected. Here (−1)-connected shall be

the empty condition.

2. Ga,b to be the graph with the same object set as G and morphisms as follows:

For f : M0
∼=−→M1 we have If ∈ A connecting M0 and M1 and for every surgery

1A subcategory is called wide if it contains all objects.
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embedding ϕ : Sk−1 × Dd−k ↪→ M with k ∈ [a + 1, d − b − 1] we have Sϕ ∈ A
connecting M and Mϕ. Analogously to Definition 2.2.5, we define X a,bd :=

C(Ga,b)/R.

Note that Borda,bd is a category by the Blakers-Massey excision theorem [Die08, Theo-

rem 6.4.1].

Theorem 2.3.3. For d ≥ 7, the functor P−1,2 : X−1,2
d → Bord−1,2

d defined as in Theorem

2.3.1 is an equivalence of categories.

Proof. The proof goes along the same lines as the proof of Theorem 2.3.1. For fullness

we note that if the inclusions ψ−1
1 : M1 ↪→W is 2-connected respectively, there exists a

Morse function with all indices ≤ d− 3 by Theorem 1.6.2. Faithfulness follows from

Proposition 1.6.4.





3
The surgery map

Having the presentation of the category Bordd from the previous section at hand we

can now turn to the scalar curvature part of the picture. We define and analyze the

surgery map. This is our main tool for studying the action of the mapping class group

on metrics of positive scalar curvature.

3.1 Definition of the surgery map

Recall that C(Ga,b) is the free category corresponding to the surgery datum category

X a,bd . Also let hTop denote the homotopy category of spaces, i. e. the category with

spaces as objects and whose morphisms are the homotopy classes of maps.

Definition 3.1.1. We define a functor

S : C(G−1,2) −→ hTop

by the following:

1. S(M) = R+(M).

2. For f : M0
∼=−→M1 the morphism If is mapped to [g 7→ f∗g], where f∗ := (f−1)∗.

39
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3. For ϕ : Sk−1 ×Dd−k ↪→M with k ≤ d− 3,

Sϕ 7→ [R+(M) 99K R+(M,ϕ)
∼=−→ R+(Mϕ, ϕ

op) ↪→ R+(Mϕ)],

where the first map in this chain is the homotopy inverse to the inclusion and the

second one works as follows: For a metric g̃ on M \ im ϕ, the metric g̃∪ϕ∗(gk−1
◦ +

gd−ktor ) is mapped to g̃ ∪ (ϕop)∗(g
k
tor + gd−k−1

◦ ).

We will abbreviate Sf := S(If ) and Sϕ := S(Sϕ).

Remark 3.1.2. We have S(morC(G2,2)(M0,M1)) ⊂ hIso(R+(M0),R+(M1)), i.e. S maps

morphisms in C(G2,2) to (the homotopy classes of) homotopy equivalences. This

follows from the Parametrized Surgery Theorem (cf. Theorem 1.7.8).

Lemma 3.1.3. Then S induces a well-defined functor X−1,2
d −→ hTop.

Proof. For d ≤ 2 the statement and the proof of this theorem is trivial since morX−1,2
d

is

generated by diffeomorphisms and it suffices to note that isotopic diffeomorphisms

induce homotopic maps. Therefore we may assume d ≥ 3 throughout this proof.

Throughout this proof we will draw dashed arrows for maps that contain inverses of

weak homotopy equivalences (cf. Remark 1.7.10).

We need to show that the relations R from Definition 2.2.5 do not change the homotopy

class of S(α) for α ∈ morX−1,2
d

(M0,M1). This is obvious for relations 1, 2 and 4. For

relation 5 this is easy as well, because g◦+gtor isO(k)×O(d−k)-invariant. Also, Sf◦ϕ◦If
and Ifϕ ◦ Sϕ give homotopic maps because of the following homotopy-commutative

diagram.

R+(M0) R+(M0, ϕ) R+((M0)ϕ, ϕ
op) R+((M0)ϕ)

R+(M1) R+(M1, f ◦ ϕ) R+((M1)f◦ϕ, (f ◦ ϕ)op) R+((M1)f◦ϕ)

f∗ (fϕ)∗f∗ (fϕ)∗

For relation 6 let ϕ,ϕ′ be two surgery embeddings into M with disjoint images. Then

there are inclusionsR+(M,ϕ)←↩ R+(M,ϕq ϕ′) ↪→ R+(M,ϕ′) and performing both

surgery maps at the same time is the same as performing them one after another.
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The hardest part of this proof is to show that handle cancellation does not alter the

homotopy class of S(α). If d = 3 the only surgery data in morX−1,2
d

are of the form

S−1 × D3 ↪→ M . Hence there cannot be cancelling surgeries and we may assume

that d ≥ 4 from now on. Let ϕ, ϕ′ be surgery data in M as in relation 7 and let

f := idM # ηk where ηk : Sd−1
∼=−→ (Sd−1

ϕ )ϕ′ is the fixed diffeomorphism from Section

1.5. Note that in this case we have k ≤ d− 4 and d ≥ 4. There exists an embedding of a

disk Dd−1 ∼= D ⊂M such that im ϕ ⊂ D and im ϕ′ ⊂ Dϕ. It suffices to show that the

composition

R+(M,D; gtor) R+(M) R+
(
(Mϕ)ϕ′

)
R+(M)

ι Sϕ′ ◦ Sϕ f∗

is homotopic to the inclusion ι: Then by the Parametrized Surgery Theorem (cf. Theo-

rem 1.7.8), the inclusion map ι is a weak homotopy equivalence since d ≥ 4 and hence

Sϕ′ ◦ Sϕ is homotopic to f∗.

Let g ∈ R+(D,ϕ)g◦ be a metric in the component of gtor ∈ R+(D)g◦ . Consider the

following diagram:

R+(M \D)g◦ R+(M,D; g)

R+(M,D; gtor)

R+(M,ϕ)

R+(M)

∼=

∼=

'

'

The composition of the top maps is given by gluing in g and the composition of the

lower maps is given by gluing in gtor. These two metrics are homotopic relative to

the boundary and hence this diagram commutes up to homotopy. The bottom map

and the right-hand vertical map are weak equivalences by the Parametrized Surgery

Theorem (cf. Theorem 1.7.8) because d ≥ 4 and k ≤ d− 4. Hence, the inclusion map

R+(M,D; g) ↪→ R+(M,ϕ) is a weak equivalence as well. Let gϕ be the metric obtained

from g by cutting out ϕ∗(gk−1
◦ + gd−ktor ) and gluing in ϕop

∗ (gktor + gd−k−1
◦ ). The following

diagram commutes on the nose with the non-dashed arrows and up to homotopy with

the dashed arrow:
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R+(M) R+(M,ϕ) R+(Mϕ, ϕ
op) R+(Mϕ)

R+(M,D; g) R+(Mϕ, Dϕ; gϕ)

'

'

∼= '

'

∼=

It again follows that the right-hand vertical map and the right-hand diagonal map

are weak equivalences. Note that the composition of the bottom horizontal maps is

precisely the map Sϕ. Now let g̃ ∈ R+(Dϕ, ϕ
′)g◦ be a metric in the component of

gϕ ∈ R+(Dϕ)g◦ . We get the following diagram

R+(Mϕ \Dϕ)g◦ R+(Mϕ, Dϕ; g̃)

R+(Mϕ, Dϕ; gϕ)

R+(Mϕ, ϕ
′)

R+(Mϕ)

∼=

∼=

'

'

which is homotopy commutative as g̃ and gϕ are homotopic. The righthand vertical

map is a weak equivalence because d−k−1 ≥ 3 and we deduce thatR+(Mϕ, Dϕ; g̃) ↪→
R+(Mϕ, ϕ

′) is a weak equivalence as well. Let g̃ϕ′ be the metric obtained from g̃ by

cutting out ϕ′∗(gk◦ + gd−k−1
tor ) and gluing in ϕ′op

∗(g
k+1
tor + gd−k−2

◦ ). We get the analogous

homotopy-commutative diagram:

R+(Mϕ) R+(Mϕ, ϕ
′) R+((Mϕ)ϕ′ , ϕ

′op) R+((Mϕ)ϕ′)

R+(Mϕ, Dϕ; g̃) R+((Mϕ)ϕ′ , (Dϕ)ϕ′ ; g̃ϕ′)

' ∼= '

'

∼=

This accumulates to the following diagram where all arrows are weak equivalences:
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R+(M) R+(Mϕ) R+((Mϕ)ϕ′)

R+(M,D; gtor) R+(Mϕ, Dϕ; gϕ) R+(Mϕ, Dϕ; g̃) R+((Mϕ)ϕ′ , (Dϕ)ϕ′ ; g̃ϕ′)

R+(M)

Sϕ S ′ϕ

ι

(1)

f∗

Here, the map (1) is given by cutting out gϕ and gluing in g̃. Since these are homotopic

relative to the boundary, the inside triangle and hence the entire diagram commutes

up to homotopy. Therefore, the composition f∗ ◦ Sϕ′ ◦ Sϕ ◦ ι is homotopic to the

inclusion if and only if the top row composition in this diagram is. In contrast to

f∗ ◦ Sϕ′ ◦ Sϕ ◦ ι this composition only consists of actual maps which are given as

follows: For h ∈ R+(M \D)g◦ we have

h ∪ gtor h ∪ gϕ h ∪ g̃ h ∪ g̃ϕ′

h ∪ f∗g̃ϕ′

We will denote the path component of a psc metric g on M by [g] ∈ π0(R+(M)). By

the above argument it suffices to show that [f∗g̃ϕ′ ] = [gtor] ∈ π0(R+(D)g◦). This is

implied by Lemma 3.1.4 as follows: We can assume that D ⊂ Sd−1 is a hemisphere

and we have f∗ ◦ Sϕ′ ◦ Sϕ([gtor ∪ gtor]) ∼ [gtor ∪ f∗g̃ϕ′ ] by the above argument for

M = Sd−1 and h = gtor. After possibly changing the coordinates of the disk D we

may assume the following: If ak : Sd−1
∼=−→ (Sk−1 × Dd−k) ∪ (Dk × Sd−k−1) is the

solid torus decomposition then ak ◦ ϕ is given by the inclusion of the first factor and

akϕ ◦ϕ′ : Sk ×Dd−k−1 ↪→ (Sk ×Dd−k−1)∪ (Sk ×Dd−k−1) is also given by the inclusion

of the first factor (cf. Section 1.5). In this case we have f = ηk. The metric [gtor ∪ gtor] is

homotopic to the round metric by [Wal11, Lemma 1.9] and we have

[gtor ∪ f∗g̃ϕ′ ] ∼ η∗k ◦ Sϕ′ ◦ Sϕ([gtor ∪ gtor]) ∼ η∗k ◦ Sϕ′ ◦ Sϕ([g◦])
Lemma 3.1.4∼ [g◦]

∼ [gtor ∪ gtor].
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Also g1 := gtor ∪ f∗g̃ϕ′ and g2 := gtor ∪ gtor are both in the image of the inclusion map

R+(D)g◦ ↪→ R+(Sd−1) which is a weak equivalence and since [g1] = [g2] it follows that

[gtor] = [f∗g̃ϕ′ ] ∈ π0(R+(D)g◦).

Lemma 3.1.4. Let g◦ ∈ R+(Sd−1) be the round metric and let ak : Sd−1
∼=−→ (Sk−1 ×

Dd−k)∪ (Dk × Sd−k−1) be the solid torus decomposition. Let ϕ : Sk−1 ×Dd−k ↪→ Sd−1 and

let ϕ′ : Sk ×Dd−k−1 ↪→ Sd−1
ϕ be surgery data such that ak ◦ ϕ and akϕ ◦ ϕ′ are both given by

the inclusion of the respective first factor. Then Sϕ′ ◦ Sϕ([g◦]) ∼ Sηk([g◦]) = (ηk)∗[g◦].

Proof. Let gkmtor := (gk−1
◦ + gd−ktor ) ∪ (gktor + gd−k−1

◦ ) denote the mixed torpedo metric

on(Sk−1 ×Dd−k) ∪ (Dk × Sd−k−1). By [Wal11, Lemma 1.9]) we have (ak)∗gkmtor ∼ g◦

and hence

Sϕ(g◦) ∼ Sϕ
(
(ak)∗gkmtor

)
= Sϕ(S(ak)−1(gkmtor))

∼ S(akϕ)−1Sak◦ϕ(gmtor) = (akϕ)∗Sak◦ϕ(gkmtor)

Now ak ◦ ϕ is given by the inclusion and hence

Sak◦ϕ(gkmtor) ∼ (gtor + g◦) ∪ (gtor + g◦) ∼ g◦ + g◦ ∼ (g◦ + gtor) ∪ (g◦ + gtor)︸ ︷︷ ︸
=:g

on (Dk × Sd−k−1) ∪ (Dk × Sd−k−1) = Sk × Sd−k−1 = (Sk ×Dd−k−1) ∪ (Sk ×Dd−k−1).

We can now compute

Sϕ′Sϕ(g◦) ∼ Sϕ′
(
(akϕ)∗g

)
∼ (akϕ)ϕ′

∗ Sakϕ◦ϕ′(g)

∼ (akϕ)ϕ′
∗ S(akϕ)◦ϕ′

(
(g◦ + gtor) ∪ (g◦ + gtor)

)
︸ ︷︷ ︸

=(gtor+g◦)∪(g◦+gtor)=g
k+1
mtor

∼ (akϕ)ϕ′
∗ gk+1

mtor

We have to show that (akϕ)ϕ′
∗ gk+1

mtor ∼ ηk∗g◦ which is equivalent to η∗k
(
(akϕ)ϕ′

)∗
gk+1
mtor ∼

g◦. But ηk was chosen such that
(
(akϕ)ϕ′ ◦ ηk

)
= ak+1 and therefore

η∗k(a
k
ϕ)ϕ′

∗gk+1
mtor = (ak+1)∗gk+1

mtor ∼ g◦.

We get the following Corollary which follows immediately from Lemma 3.1.3 and

Theorem 2.3.3.
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Corollary 3.1.5. Let d ≥ 7. Then there is a unique functor1

S : Bord−1,2
d −→ hTop

which satisfies:

1. S(M) = R+(M)

2. S(M×I,id,f) = f∗

3. S(tr ϕ,id,id)(g) = Sϕ.

Corollary 3.1.6. Let W = (W,ψ0, ψ1) : M0  M1 be an admissible cobordism. Then there is

a well defined homotopy class of a map SW : R+(M0)→ R+(M1). If W op := (W op, ψ1, ψ0)

is also admissible, i.e. ψ−1
0 : M0 ↪→W is also 2-connected, then SW is a homotopy equivalence

and a homotopy-inverse is given by SW op .

Remark 3.1.7. The construction from the proof of [Wal11, Theorem 3.1] (cf. Lemma

1.7.12) show the following: If W = (W, id, id) : M0  M1 be an admissible cobordism,

g0 ∈ R+(M0) and g1 ∈ R+(M1) are metrics such that SW ([g0]) ∼ [g1], then there exists

a metric G ∈ R+(W )g0,g1 .

3.2 Surgery invariance of S

In this section we prove the following Lemma.

Lemma 3.2.1. Let d ≥ 7 and let M0, M1 be two (d − 1)-manifolds, let W = [W, id, id] ∈
morBord−1,2

d
(M0,M1) and let Φ: Sk−1 ×Dd−k+1 ↪→ Int W be an embedding with 3 ≤ k ≤

d− 3. Then SW ∼ SWΦ
.

Proof. First we note that for 3 ≤ k ≤ d − 3, WΦ is again an admissible cobordism:

Let W ◦ := W \ im Φ. Then W ◦ ↪→ W is (d − k)-connected and W ◦ ↪→ WΦ is (k − 1)-

connected by Lemma B.3. We have the following diagram:

W W ◦ WΦ

M1

2-connected

(d− k)-connected (k − 1)-connected

1By abuse of notation, we call this functor S again.
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Since 3 ≤ k ≤ d − 3, the inclusions M1 ↪→ W ◦ and M1 ↪→ WΦ are 2-connected and

hence WΦ is admissible.

We first prove Lemma 3.2.1 in the case that k 6= 3. Let c : M1 × [1 − ε, 1] ↪→ W be a

collar which does not intersect im Φ and let γ : [0, 1] ×Dd−1 ↪→ W be an embedded,

thickened path connecting M1 × {1− ε} and im Φ. Let

W1 := im c #∂ im Φ := im c ∪ im γ ∪ im Φ

W ′1 := im c #∂ im Φop

W0 := W \W1.

We choose γ, so that the boundaries of all of these are smooth. Then W1 'M1 ∨ Sk−1,

W ′1 'M1 ∨ Sd−k, W0 ∪W1 = W and W0 ∪W ′1 = WΦ. Since M1 ↪→ W and M1 ↪→ WΦ

are 2-connected and 4 ≤ k ≤ d− 3, the maps M1 ∨ Sk−1 'W1 ↪→W and M1 ∨ Sd−k '
W ′ ↪→WΦ are 2-connected as well.

W W𝚽

M1 x [1-ɛ,1] #∂ im 𝚽 M1 x [1-ɛ,1] #∂ im 𝚽op

W1 W1
'

W0 W0

FIGURE 3.1: Surgery on the cobordism W

Note that W1 and W ′1 have the same boundary M ′1 ∼= M1#(Sk−1 × Sd−k), namely

∂W1 = M1 q (M1 # ∂(im Φ))︸ ︷︷ ︸
=:M ′1

= M1 q (M1 # ∂(im Φop)) = ∂W ′1.

Next, we show that W0, W1, W ′1 and W op
1 are again admissible. Becaus of W1 '

M1 ∨ Sk−1 and W ′1 'M1 ∨ Sd−k:

- (W1,M1) is (k − 2)-connected.
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- (W1,M
′
1) is (d− k)-connected.

- (W ′1,M1) is (d− k − 1)-connected.

So, for 4 ≤ k ≤ d − 3 all of these are at least 2-connected and hence W1, W ′1 and

W op
1 are admissible2. For W0 we note that W is homotopy equivalent to W0 with a

(d− k + 1)-cell attached along Φ({1} × Sd−k):

W0 ∪Dd−k+1 =
(
W \ (im Φ ∪ im γ)

)
∪Dd−k+1

= W \ (im Φ \Dd−k+1︸ ︷︷ ︸
'Dd

∪ im γ) 'W.

Therefore W0 ↪→W is (d− k)-connected and we have the following diagram.

M ′1 W1

W0 W

2-connected

2-connected

(d− k)-connected

and hence M ′1 ↪→W0 is 2-connected, too.

So we get a decompositions into admissible cobordisms W = W0 ∪W1 and WΦ =

W0 ∪W ′1 which implies SW = SW1 ◦ SW0 and SWΦ
= SW ′1 ◦ SW0 . In the homotopy

category hTop we have

SWΦ
= SW ′1 ◦ SW1∪W op

1︸ ︷︷ ︸
=id

◦SW0

= SW ′1 ◦ SW op
1
◦ SW1 ◦ SW0 = SW op

1 ∪W ′1 ◦ SW

and so it suffices show that W op
1 ∪ W ′1 is diffeomorphic to M1 × I relative to the

boundary since SW only depends on the diffeomorphism type of W (see Lemma 3.1.3

2Note that without k ≥ 4, the cobordism W1 might not be admissible.
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and its Corollary 3.1.5). We have (see Figure 3.2)

W op
1 ∪W

′
1 =

(
(M1 × [0, ε]) #∂ S

k−1 ×Dd−k+1
)

∪
M ′1

(
Dk × Sd−k #∂ (M1 × [1− ε, 1])

)
∼= M1 × [0, 2ε] #

(
(Sk−1 ×Dd−k+1) ∪

Sk−1×Sd−k
(Dk × Sd−k)

)
︸ ︷︷ ︸

∼=Sd

∼= M1 × [0, 1].

and these diffeomorphisms are supported on a small neighbourhood of M ′1 and hence

relative to the boundary. This finishes the proof for the case k 6= 3.

W1'

W1
op

 

(M1 x [0,2ɛ]) # Sd ≅ M1 x [0,1]

FIGURE 3.2: Gluing W op
1 to W ′1

For the case k = 3 we need a different argument, because W1 might not be admissible

in this case. Consider the map

Emb(S2 ×Dd−3,M1) −→ Emb(S2 ×Dd−2,M1 × [0, 2])

which is given by ϕ 7→ Φ with Φ(x, (y, t)) = (ϕ(x, y), t) for x ∈ S2 and (y, t) ∈ Dd−2 ⊂
Dd−3× [0, 1]. We also have a map Emb(S2×Dd−2,M1× [0, 2]) ↪→ Emb(S2×Dd−2,W )

given by shrinking the interval and composing with the inclusion of the collar. We will

use the following Lemma.

Lemma 3.2.2. In the present situation, the maps Emb(S2 × Dd−3,M1) −→ Emb(S2 ×
Dd−2,M1 × [0, 2]) and Emb(S2 × Dd−2,M1 × [0, 2]) ↪→ Emb(S2 × Dd−2,W ) are both

0-connected.



Chapter 3 - The surgery map 49

By this Lemma we may isotope the embedding Φ: S2 ×Dd−2 ↪→W so that its image
is contained in the collar of the boundary M1. So we may assume that W = M1 × [0, 2].
We abbreviate M := M1. Again by the above lemma, we can isotope Φ such that
Φ(S2 ×Dd−3 × {0}) ⊂M × {1}, i. e. Φ is a thickening of Φ|S2×Dd−3×{0}. We abbreviate
ϕ := Φ|S2×Dd−3×{0}. Let us now give a diffeomorphism

(M × [0, 12 ] ∪
ϕ
D3 ×Dd−3)︸ ︷︷ ︸

∼=tr ϕ

∪ (M × [ 12 , 1] ∪
ϕ
D3 ×Dd−3)︸ ︷︷ ︸

∼=(tr ϕ)op

α−→ (M × I) \ im Φ ∪D3 × Sd−3︸ ︷︷ ︸
∼=(M×I)Φ

.

On (M \ im ϕ)× I the diffeomorphism α shall be given by the identity. Next we take

diffeomorphisms

α1 : im ϕ× [0,
1

2
]
∼=−→ (im ϕ× [0,

1

2
]) \ (im Φ ∩ [0,

1

2
])

α2 : im ϕ× [
1

2
, 1]

∼=−→ (im ϕ× [
1

2
, 1]) \ (im Φ ∩ [

1

2
, 1]).

On the D3 ×Dd−3-parts it is given by the inclusion of the lower or upper hemisphere

D3×Sd−3
± ⊂ D3×Sd−3. This diffeomorphism is visualized in Figure 3.3. Therefore we

have S(M×I)Φ
∼ S tr ϕop ◦ S tr ϕ ∼ id ∼ SM×I and the proof is finished modulo Lemma

3.2.2.

≅

≅

FIGURE 3.3: The diffeomorphism α.
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Proof of Lemma 3.2.2. We have the following diagram

Emb(S2 ×Dd−3,M1) Emb(S2 ×Dd−2,M1 × [0, 2])

Imm(S2 ×Dd−3,M1)

Mon(TS2 ⊕ Rd−3, TM1)

Map(S2, F r(TM1)) Map(S2, F r(TM1 ⊕ R))

Emb(S2 ×Dd−2,W )

Imm(S2 ×Dd−2,W )

Mon(TS2 ⊕ Rd−2, TW )

Map(S2, F r(W ))

(4)

(1) (6)

(5)

(3)

' '

∼= ∼=
(2)

where Mon denotes the space of bundle monomorphisms. Note that the bottom-most

vertical maps are homeomorphisms because S2 is stably parallelizable and the middle

ones are homotopy equivalences by the Smale-Hirsch immersion theorem (cf. [Ada93,

Section 3.9]). The map (1) is 0-connected because of the Whitney embedding (cf. [Hir76,

pp. 26]) and the maps (5) and (6) are π0-bijections by Lemma A.1. It remains to show

that (2) and (3) are 0-connected. Then the map (4) is 0-connnected, too. For (2) consider

the following diagram of fibrations.

Map(S2,Gld−1(R)) Map(S2,Gld(R))

Map(S2,Fr(TM1)) Map(S2,Fr(TM1 ⊕ R))

Map(S2,M) Map(S2,M)

d− 4-conn.

Since d− 4 ≥ 3, the map (2) is 0-connected. The map (3) fits in a similar diagram:

Map(S2,Gld(R)) Map(S2,Gld(R))

Map(S2,Fr(TM1 ⊕ R)) Map(S2,Fr(W ))

Map(S2,M1) Map(S2,W )

Since M1 ↪→ W is 2-connected, the bottom-most map is 0-connected and hence so is

the map (3).
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3.3 The factorization of the action map

In this section we state and prove the main theorem of this chapter and in fact the

main result of this thesis. Before we can do so let us introduce some notation. Let

θ : B → BO(d) be a once-stable tangential structure. Let Ω̂θ
d,2 denote the category which

has (d − 1)-dimensional θ-manifolds (Md−1, l̂) as objects and the set of morphisms

from (M0, l̂0) to (M1, l̂1) is given by Ωθ
d((M0, l̂0), (M1, l̂1)) if the underlying structure

map l1 : M1 → B is 2-connected and by the empty set otherwise.

Theorem 3.3.1. Let d ≥ 7. Then there is a unique functor S : Ω̂θ
d,2 −→ hTop such that

1. S(M) = R+(M),

2. S(M × I, id, f−1) = [g 7→ f∗g],

3. S(tr ϕ, id, id) = Sϕ for a surgery datum ϕ : Sk−1 ×Dd−k ↪→M with d− k ≥ 3.

Proof. Let V := (V, ψ0, ψ1) : M0  M1 be a θ-cobordism. By Lemma B.4, there exists

a θ-cobordism V ′ : M0  M1 in the same cobordism class such that (V ′,M1) is 2-

connected. We define SV := SV ′ . By definition of S it is clear that this is a functor

satisfying the three conditions. Therefore it remains to show that this is well-defined.

Let X : V0  V1 be a θ-cobordism relative to ∂V0 = ∂V1 and let Xi : Vi  V ′i be relative

θ-cobordisms such that (V ′i ,M1) is 2-connected for i = 0, 1. We get a θ-cobordism

X̃ := Xop
0 ∪X ∪X1 : V ′0  V0  V1  V ′1 . Again, by Lemma B.4, we may assume that

(X̃, V ′i ) is 2-connected. So, V ′1 is obtained from V ′0 by a sequence of surgeries of index

k ∈ {3, . . . , d − 2} by Lemma 1.6.5. One can order these surgeries, so that one first

performs the 3-surgeries, the 4-surgeries next and so on up to the d− 3-surgeries. By

Lemma 3.2.1 all of these do not change the homotopy class of S and we may assume

that V ′1 is obtained from V ′0 by a finite sequence of d − 2-surgeries. Reversing these

surgeries we deduce that V ′0 is obtained from the admissible cobordism V ′1 by a finite

sequence of 3-surgeries and by Lemma 3.2.1 the map SV ′0 is homotopic to SV ′1 and

hence S is well-defined.

Remark 3.3.2. It follows that S : Ωθ
d(M0,M1) −→ [R+(M0),R+(M1)] is a Γθ(M1)-equi-

variant map with respect to the actions given by disjoint union with the mapping torus

on the left and by composition with the pullback map on the right.





4
Applications

In this chapter we give several applications of the main Theorem 3.3.1. We first give a

rigidity theorem for the action of the θ-mapping class group on the space of psc metrics.

The first application is the obvious one: the computation of examples. In Section 4.1

we present many cases in wich the rigidity theorem applies. The second application is

also a quite canonical one: Knowledge about the action map yields knowledge about

the quotientR+(M)/Diff(M). In Section 4.2 we explain how certain detection results

for π0(R+(M)) descend to the observer moduli space π0(M+
x0

(M)). We also detect

new elements of π1(M+
x0

(M)) for certain manifolds M . The third application is not

such an obvious one: Using Theorem 3.3.1 we define H-space structures onR+(M) in

Section 4.3. We also show that invertible elements with respect to these structures are

intrinsic toR+(M) and all the obtained structures are in fact equivalent but not equal.

As our final application we provide a triviality and a non-triviality criterion for the

action map in Section 4.4. This leads to a full characterization of the action of Diff+(M)

onR+(M) for simply connected Spin-manifolds of dimension 7.
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4.1 The action of Γθ(M, l̂) onR+(M)

For the first application we consider the case M = M0 = M1. For a space X let

hAut(X) denote the group-like H-space of weak homotopy equivalences of X .

Corollary 4.1.1. Let d ≥ 7 and let θ : B → BO(d) be the stabilized tangential 2-type of

Md−1. Then there is a group homomorphism SE : Ωθ
d → π0

(
hAut(R+(M))

)
such that the

following diagram commutes:

Γθ(M, l̂)

Ωθ
d

π0(hAut(R+(M)))

[f ]

[Tf ] [W ]

SE(W )(g 7→ f∗g)

Proof. Using the isomorphism Φ: Ωθ
d → Ωθ

d(M,M) given by disjoint union with M ×
[0, 1] (cf. Corollary 1.3.7) we define SE(W ) := S(M×I q W,id,id). Then

SE(W q V ) = S(M×I q W q V,id,id) = S((M×[0,1] q V )∪(M×[1,2] q W ),id,id)

= S(M×[1,2] q V,id,id) ◦ S(M×[0,1] q W,id,id) = SE(W ) ◦ SE(V ),

so it is a homomorphism. By Theorem 3.3.1 the above diagram is commutative since

[M × I q Tψ, id, id] = [M × I, id, ψ−1] (cf. Corollary 1.3.9 and Remark 1.3.10).

Remark 4.1.2. As mentioned in Lemma 1.7.12 (see also [Wal11]), Walsh constructed

a psc metric G on an admissible self-cobordism W : M  M extending a given psc

metric g0 on the incoming boundary using basically the same method used here. He

showed that the homotopy class of G restricted to the outgoing boundary does not

depend on the handle presentation [Wal14, Theorem 1.3]. Therefore he obtained a map

fW ∈ Aut(π0(R+(M))) given by [g0] 7→ [G|M×{1}]. By seperating the cobordism part

of the picture (Chapter 2) from the scalar curvature part of the picture (Chapter 3) we

upgraded this to give an actual homotopy class of a map SW ∈ π0(hAut(R+(M)))

inducing Walsh’s map on π0(R+(M)).

Having Corollary 4.1.1 at our disposal it is natural to look for cases it applies to. For

example, since ΩSpin
7
∼= 0 ∼= ΩSO

7 (cf. [Tho54, Théorème II.16, p. 49] and Proposition

4.1.5), one obtains an immediate result for 6-manifolds:
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Corollary 4.1.3. Let M6 be a simply connected manifold. Then the action of Diff+(M) on

R+(M) is homotopy-trivial, i. e. for every orientation preserving diffeomorphism f of M the

pullback map f∗ is homotopic to the identity.

4.1.1 Cobordism classes of mapping tori

Having Corollary 4.1.1 at hand we can start the hunt for examples. In this subsection

we compute cobordism classes of mapping tori. Except for one, all of the results

here have implications to the action of the mapping class group on psc metrics. Let

us start by listing a few facts about ΩSO
∗ and ΩSpin

∗ . For a manifold M we denote

by pi(M) ∈ H4i(M ;Z) its Pontryagin classes and by wi(M) ∈ H i(M ;Z/2) its Stiefel-

Whitney classes1. A Pontryagin- or Stiefel-Whitney-number is the integration of a

product of Pontryagin- or Stiefel-Whitney-classes against the fundamental class of M .

Proposition 4.1.4 ([Wal60, Corollary 1]). Let [T ] ∈ ΩSO
d . If all Pontryagin-numbers of T

vanish, then T is rationally nullbordant. If furthermore all Stiefel-Whitney-numbers vanish,

then T is nullbordant.

Lemma 4.1.5 ([Wal60, Theorem 1] and [ABP67, Corollary 2.6]). Let α : ΩSpin
d → ΩSO

d

denote the forgetful map. We have:

1. All torsion in ΩSO
d and ΩSpin

d is 2-torsion.

2. ΩSO
d ⊗Q is concentrated in degrees divisible by 4 and α⊗ idQ is an isomorphism.

3. kerα is concentrated in degrees d ≡ 1, 2(8) and is a finite dimensional Z/2-vector space

there.

Proposition 4.1.6 ([Neu71]). The signature of a mapping torus vanishes.

Proof. The absolute value of the signature of a manifold X4n is bounded by the 2n-th

(rational) Betti number b2n(X,Q). For a mapping torus we have

b2n(Tf ,Q) ≤ b2n(M,Q) + b2n−1(M,Q)

because of the Wang sequence (see Lemma B.5). So for any f the absolute value of the

signature of Tf is bounded by some constant C independent of f . But the mapping

torus construction is a homomorphism (see Corollary 1.3.9) and we get:

|sign(Tf )| = 1

l
· |sign(Tf l)| ≤

C

l

l→∞−→ 0.

1For an introduction to characteristic classes see [Hat17, Chapter 3].
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For computations of Stiefel-Whitney-numbers we need to use Steenrod squares. Let us

recall their basic properties.

Lemma 4.1.7 ([Bre93, Chapter VI, Section 16]). For every i ∈ N, there are natural, additive

homomorphisms Sqi : Hn(X;Z/2)→ Hn+i(X;Z/2) such that

1. For a ∈ Hn(X;Z/2), we have Sq0(a) = a, Sqn(a) = a2 and Sqi(a) = 0 for i > n.

2. Sqn(a ∪ b) =
∑

i+j=n Sqi(a) ∪ Sqj(b) (Cartan Formula).

3. Sqi(wj(ξ)) =
∑i

t=0

(
j+t−i−1

t

)
wi−t(ξ) ∪ wj+t(ξ) (Wu Formula).

4. Sq1 is the mod2-reduction of the Bockstein homomorphism for the sequence

Z ·2−→ Z −→ Z/2.

Remark 4.1.8. ad 3. For a proof, see [MT91, pp. 141].

ad 4. In [Bre93] the fourth property is not actually stated but easily deduced. It is said

that Sq1 is the Bockstein homomorphism for the sequence Z/2 ·2−→ Z/4 −→ Z/2.

We get a commutative diagram where the rows are exact

. . . Hk(X;Z/4) Hk(X;Z/2) Hk+1(X;Z/2) . . .

. . . Hk(X;Z) Hk(X;Z/2) Hk+1(X;Z) . . .

Sq1

id mod 2
β

which implies that β mod 2 = Sq1.

Proposition 4.1.9. The total Stiefel-Whitney class of CPk is given by w(CPk) = (1 + a)k+1,

where a is the (non-zero) second Stiefel-Whitney class of the tautological complex line bundle.

In particular, w2n(CPk) =
(
k+1
n

)
a.

Proof. By [MS74, Proof of Theorem 14.10] TCPk ⊕C ∼= γk+1
1 where γ1 is the dual of the

tautological bundle over CPk. We get w(CPk) = w(γ1)k+1 = (1 + w2(γ1))k+1.

Proposition 4.1.10. Let Md−1 be a closed, oriented manifold. Let f : M
∼=−→ M be an

orientation-preserving diffeomorphism.

1. If d 6≡ 0(4), then 2[Tf ] = 0 ∈ ΩSO
d

2. If d ≡ 0(4) and all Pontryagin-classes of M vanish, then 2[Tf ] = 0 ∈ ΩSO
d .
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Proof. By Lemma 4.1.5, it is enough to show that Tf is rationally orientedly nullbor-

dant. The first statement of the Proposition is immediate from Lemma 4.1.5, so let

us assume 4|d. By Proposition 4.1.4 it suffices to show that all Pontryagin-numbers

vanish. Consider the Wang sequence (see Lemma B.5):

0 −→ Hn(M)f
δ−→ Hn+1(Tf )

ι∗−→ Hn+1(M)f −→ 0

The righthand map is induced by the inclusion and we have ι∗pi(Tf ) = pi(ι
∗Tf ) =

pi(M) = 0 by our assumption on M . So, all Pontryagin classes of Tf lie in the image

of δ. But δ is a boundary map and hence δ(x) ∪ δ(y) = 0 for all x, y ∈ Hn(M).

Therefore, all mixed Pontryagin numbers vanish and the only possibly non-zero one is

〈pd/4(Tf ), [Tf ]〉. But this is some nonzero multiple of the signature of Tf which is 0 by

Proposition 4.1.6.

Corollary 4.1.11. Let Md−1 be a closed, Spin-manifold. Let f : M
∼=−→ M be a Spin-

diffeomorphism.

1. If d 6≡ 0(4), then 2[Tf ] = 0 ∈ ΩSpin
d

2. If d ≡ 0(4) and all Pontryagin-classes of M vanish, then 2[Tf ] = 0 ∈ ΩSpin
d .

Proof. This is immediate from Proposition 4.1.5 and Proposition 4.1.10.

Corollary 4.1.12. Let Md−1 be a closed, oriented manifold with finite fundamental group G.

Let a : M → BG be the classifying map for the universal cover of M and let f : M
∼=−→M be

an orientation preserving diffeomorphism that acts by an inner automorphism on fundamental

group. We get a map af : Tf → BG. If 4|d let pi(M) = 0 for all i ≥ 0. Then there exists an

n ∈ N such that 0 = n · [Tf , af ] ∈ ΩSO
d (BG). Furthermore n divides 2 · |G|.

Proof. Consider the Atiyah-Hirzebruch-spectral-sequence with rational coefficients:

E2
pq = Hp(BG,Ω

SO
q ⊗Q)⇒ ΩSO

p+q(BG)⊗Q

Since Hp(BG) is torsion for p ≥ 1, E2
pq = 0 unless p = 0. If p = 0, then Epq2

∼= ΩSO
d ⊗Q

and hence by convergence of the spectral sequence ΩSO
d (BG)⊗Q ∼= ΩSO

d ⊗Q. The same

proof as in Proposition 4.1.10 applies. For the divisibility, note that for any element

x ∈ Hp(BG) satisfies |G| · x = 0.

Remark 4.1.13. Again, the analogous result is true if one replaces SO by Spin.
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Putting further restrictions on M we get the following result, which is due to Kreck

[Kre76, Proposition 13]. For the sake of completeness we include the proof here.

Proposition 4.1.14. Let M be stably parallelizable and f : M
∼=−→ M be an orientation

preserving diffeomorphism. Then Tf is orientedly nullbordant. If furthermore f is a Spin

diffeomorphism and d 6≡ 1, 2(8), then Tf is Spin nullbordant.

Proof. By Proposition 4.1.4 it suffices to show that all characteristic numbers van-

ish. By the same argument as in the proof of Proposition 4.1.10, all mixed Pontrya-

gin and Stiefel-Whitney numbers vanish. It remains to consider 〈pd/4(Tf ), [Tf ]〉 and

〈wd(Tf ), [Tf ]Z/2〉. The former vanishes by the same argument as in the proof of Propo-

sition 4.1.10. The latter is the mod2-reduction of the Euler number. But the Euler

number of a fibration is multiplicative and hence 〈wd(Tf ), [Tf ]Z/2〉 = 0. The Spin-case

follows directly from Lemma 4.1.5.

Proposition 4.1.15. Let k ≥ 1 and let f : CP2k+1
∼=−→ CP2k+1 be a Spin-diffeomorphism.

Then Tf is Spin-nullbordant.

Proof. A mapping torus of CP2k+1 has real dimension 4k + 3 and hence all Pontrya-

gin numbers vanish for dimension reasons. So it suffices to consider Stiefel-Whitney

numbers. Since f is orientation preserving, it must act trivially on the highest coho-

mology of CP2k+1. It follows from the ring structure that f acts trivially on the entire

cohomology ring as 2k+1 is odd. From Lemma B.5 we get the following decomposition

Hn(Tf ) ∼= Hn(CP2k+1)⊕Hn−1(CP2k+1)

Therefore ι∗ : H2l(Tf )→ H2l(CP2k+1) is an isomorphism and all odd Stiefel-Whitney

classes of Tf lie in the image of the boundary map δ. This implies that mixed Stiefel-

Whitney numbers may contain at most one odd Stiefel-Whitney class, as the boundary

map kills products. Now w2n(CP2k+1) =
(

2k+2
n

)
a which is 0 mod 2 if n is odd. Further-

more, by the Wu formula we have

w4l+3(Tf ) = w1(Tf ) ∪ w4l+2(Tf ) + w4l+3(Tf ) = Sq1(w2(2l+1)(Tf ))

= (ι∗)−1Sq1(w2(2l+1)(CP2k+1)) = 0
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since Tf is orientable. So, any possibly nonzero Stiefel-Whitney number has the form

〈w4n1(Tf ) · · · w4nl−1
(Tf ), [Tf ]Z/2〉 or

〈w4n1(Tf ) · · · w4nl−1
(Tf ) · w4nl+1(Tf ), [Tf ]Z/2〉.

However, the degree ofw4n1(Tf )···w4nl−1
(Tf )·w4nl+1(Tf ) is≡ 0, 1(4) but the dimension

of Tf is ≡ 3(4). So, all Stiefel-Whitney numbers vanish and Tf is orientedly and even

Spin-nullbordant by Lemma 4.1.5.

An example of a mapping torus which is not nullbordant is the following.

Proposition 4.1.16. The mapping torus Tc of the diffeomorphism c : CP2k
∼=−→ CP2k induced

by complex conjugation which is orientation-preserving is not orientedly nullbordant.

Remark 4.1.17. The complex conjugation on CP1 ∼= S2 is homotopic to the antipodal

map and hence induces −1 on H2(CP1) ↪→ H2(CP2k). Because of the ring structure it

is orientation preserving on CP2k but not on CP2k+1.

Proof of Proposition 4.1.16. This proof is a generalization of a math-overflow post by

Achim Krause [Kra]. For this entire proof, wi denotes the i-th Stiefel-Whitney class of

Tc. We have c∗ = (−1)n on H2n(CP2k) and hence we get from Lemma B.5

H2n(Tc) ∼= H2n(CP2k)c
∗ ∼=

Z if n is even

0 if n is odd

H2n+1(Tc) ∼= H2n(CP2k)c∗ ∼=

Z if n is even

Z/2 if n is odd

and Hn(Tc;Z/2) = Z/2 for 0 ≤ n ≤ 4k + 1. We get the Bockstein sequence

. . . H4n+2(Tc;Z) H4n+2(Tc;Z/2) H4n+3(Tc;Z) H4n+3(Tc;Z)

H4n+3(Tc;Z/2)

H4n+4(Tc;Z) . . .

0 Z/2 Z/2

Z/2

Z/2

Z

β
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If n 6≡ 2(4), the map β = 0 because in these cases Hn+1(Tc,Z) is either 0 or Z. So the

integral Bockstein homomorphism β : Hn(Tc,Z/2)→ Hn+1(Tc,Z) is nontrivial if and

only if n ≡ 2(4). The same holds for Sq1 and we have 0 6= Sq1(w2) = w3 by Wu’s

formula. By Cartan’s formula

Sq1(wn2 ) = Sq1(w2) ∪ wn−1
2 + w2 ∪ Sq1(wn−1

2 )

which by induction is 0 if n is even and equal to wn−1
2 ∪ w3 if n is odd. This is nonzero

because Sq1 is nonzero. We compute further

Sq2(wn−1
2 ∪ w3) = Sq2(w2) ∪ wn−2

2 ∪ w3

+ w2 ∪ Sq2(wn−2
2 ∪ w3).

By induction this is 0 if n is even and equal to wn2 ∪ w3 if n is odd. Also, if wn−1
2 ∪ w3 is

nonzero, it must lie in the image of δ for degree reasons and we get for n odd

Sq2(wn−1
2 ∪ w3) = Sq2(δ(w2(CP2k)n)) = δSq2(w2(CP2k)n)

which is nonzero by the same computation as for Sq1. So, for n = 2k − 1 we get

Sq2(Sq1(w2k−1
2 )) = Sq2(w2k−2

2 ∪ w3)︸ ︷︷ ︸
6=0

= w2k−1
2 ∪ w3

and we found a non-vanishing Stiefel-Whitney number.

Remark 4.1.18. If k is odd, 〈w2(Tf ) ∪ w4k−1(Tf ), [Tf ]〉 is another nonvanishing Stiefel-

Whitney number.

Proposition 4.1.19. Let X2k, k ≥ 3 be a stably parallelizable, simply connected, closed

manifold and let H2k−i(X;Z/2) = 0 for i = 3, 5. Let f : X × CP2
∼=−→ X × CP2 be an

orientation preserving diffeomorphism. Then Tf is orientedly nullbordant.

Proof. Again, we only need to compute Stiefel-Whitney numbers of Tf , which we again

write as wi. All cohomology in this proof will be with Z/2 coefficients. First, we note

that w2(CP2) 6= 0 and w4(CP2) = w2(CP2)2 6= 0. Also, all Stiefel-Whitney classes of X

vanish. So, all wi except for w2 and w4 are in the image of δ. We further have H2(Tf ) ∼=
H1(X × CP2)f∗ ⊕H2(X × CP2)f

∗ ∼= H2(X × CP2)f
∗

because X is simply connected.

Hence we get w2(Tf ) = (ι∗)−1(w2(X × CP2)) = (ι∗)−1(w2(CP2)). Again, products

in the image of δ are 0 and so the only possibly nonzero Stiefel-Whitney numbers
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correspond to the classes w2k+5, w2k+3w2 and w2k+1w
2
2, since w3

2 = (ι∗)−1w2(CP2)3 = 0.

By Wu’s formula we have

Sq1(w2k+i−1) = w1 ∪ w2k+i−1 +

(
2k + i− 2

1

)
w2k+i = w2k+i

for i = 1, 3, 5. If 2k ≥ 5, w2k+i−1 ∈ im δ and we have

w2k+4 ∈ δ
(
H2k+3(X × CP2)

)
∼= δ
(
H2k−1(X)⊗H4(CP2)

)
w2k+2 ∈ δ

(
H2k+1(X × CP2)

)
∼= δ
((
H2k−1(X)⊗H2(CP2)

)
⊕
(
H2k−3(X)⊗H4(CP2)

))
w2k ∈ δ

(
H2k−1(X × CP2)

)
∼= δ
((
H2k−1(X)⊗H0(CP2)

)
⊕
(
H2k−3(X)⊗H2(CP2)

)
⊕
(
H2k−5(X)⊗H4(CP2)

))
By Poincaré duality, Hurewicz’ theorem and the universal coefficient theorem it follows

that H2k−1(X) ∼= π1(X) ⊗ Z/2 ∼= 0 and so all the groups on the righthand side are

0.

The proof for the following Proposition is adapted from [KL05, Chapter 16], where

they verify the Novikov conjecture for Zn. They do so by reducing the conjecture to

the problem of showing that higher signatures of certain mapping tori vanish. Let

N be a manifold and let a : N → BG be a map. The higher signature of (N, a) with

respect to some cohomology class x ∈ H∗(BG) is defined as

signx(N, a) := 〈L(N) ∪ a∗x, [N ]〉

where L(N) is the Hirzebruch L-class of N .

Proposition 4.1.20. Let Xd−k−1 be a manifold with vanishing Pontryagin classes such that

the Whitehead group Wh(π1X⊕Zm) is trivial form ∈ {0, . . . , k−1}2. LetM := X×Tk and

let f : M
∼=−→M be an orientation preserving diffeomorphism that acts on π1(Tk) ⊂ π1(M)

by an inner automorphism. We then get a map af : Tf → BZk such that M → Tf
af→ BZk is

homotopic to the projection map. Then 0 = n · [Tf , af ] ∈ ΩSO
d (BZk) for some n ∈ N.

2This is fulfilled for example if X is simply connected or π1(X) = Zn (cf. [BHS64, p.63])
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Proof. Recall that for any manifold N , the class of [N, a] vanishes in ΩSO
d (X) ⊗ Q, if

for all classes x ∈ Hn(X;Q), the characteristic number 〈pI(N) ∪ a∗x, [N ]〉 vanishes for

every multi index I = (i1, . . . , id/4). So let us now take the situation as described in the

Proposition. By the same argument as in the proof of Proposition 4.1.10, all products

of Pontryagin classes of Tf are zero and hence we only need to check characteristic

numbers of the form 〈p(d−n)/4(Tf ) ∪ a∗fx, [Tf ]〉. But in our situation, this is precisely

a multiple of the higher signature of (Tf , af ) associated to x and hence it suffices to

show that all higher signatures of mapping tori vanish.

Let x ∈ Hm(BZk). Then there exists a projection map p : BZk � BZm such that

x = c · p∗um for some c ∈ Q and um a generator of Hm(BZm). We may assume that the

composition Tm ↪→ M ↪→ Tf
af−→ BZk p−→ BZm is equal to the projection map since

af can be changed by a homotopy.

We first show that f is isotopic to a diffeomorphism that fixes {x}×Tk−1×X setwise for

some x ∈ S1 after possibly passing to a finite covering3. We abbreviate X ′ := Tk−1×X .

Without loss of generality we may assume that f fixes a point x0. We pass to the cover

R×X ′ and we consider the lifted diffeomorphism f̂ : R×X ′ → R×X ′. Now, {0}×X ′ is
compact and there exists an integer l ≥ 0 such that f̂({0}×X ′) ⊂ [−l, l]×X ′. We divide

[−l, l]×X ′ = A−∪A+ whereA−∩A+ = f̂({0}×X ′) and ∂A± = {±l}×X ′qf̂({0}×X ′).

The inclusion A+ ↪→ f̂([0,∞) × X ′) is a homotopy equivalence and so A+ is an h-

cobordism. Since the Whitehead group Wh(π1X
′) is trivial, there is a diffeomorphism

ρ : f̂({0} ×X ′)× [0, 1]
∼=−→ A+ with ρ|f̂({0}×X′)×{0} = id by the s-cobordism theorem.

This gives an isotopy ρt : R × X ′ → R × X ′ defined by ρt(x) := ρ(f̂(0, x), t) with

ρ0(x) = (0, f̂(0, x)) and im ρ1 = M × {l}. We now project down to R/2lZ and we get

a diffeomorphism f̂l which is the 2l-fold cover of f . The above isotopy induces an

isotopy from f̂ |{0}×X′ to a diffeomorphism {0}×X ′
∼=−→ {l}×X ′ which we can further

isotope to a diffeomorphism of {0} ×X ′. By the isotopy extension theorem we get an

isotopy of f̂ to a diffeomorphism f̂ ′ of (R/2lZ)×X ′ fixing {0} ×X ′ setwise.

By an inductive argument we may assume that f fixes {0} × Tk−m ×X . The higher

signature of (Tf , af ) associated to x is the (ordinary) signature of a preimage of a

regular value of p ◦ af ([KL05, Proposition 4.3]). Now 0 is a regular value with

(p ◦ af )−1(0) = Tf |{0}×Tk−m×X
which is a mapping torus and has trivial signature by

Proposition 4.1.6.
3Passing to a finite cover does not alter the (non-)triviality of the signature because the signature is

multiplicative under finite coverings.
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4.1.2 Examples of manifolds with trivial actions

In this subsection we are mostly gathering results which are directly implied by the

corresponding results from the previous subsection and Corollary 4.1.1. We also

note that for simply connected Spin-manifolds the map ΓSpin(M)→ π0(Diff+(M)) is

surjective by Proposition 1.2.8. Hence, we are able to deduce results about the action of

the group of orientation preserving diffeomorphisms Diff+(M) onR+(M) in this case.

Corollary 4.1.21. Let d ≥ 7 and let Md−1 be a simply connected, closed, oriented manifold.

If d ≡ 0(4), let all Pontryagin classes of M vanish. Let f : M
∼=−→ M be an orientation

preserving diffeomorphism. Then (f∗)2 : R+(M)→ R+(M) is homotopic to the identity.

Corollary 4.1.22. Let M be a connected, closed, Spin-manifold with finite fundamental group

and let f : M
∼=−→M be a Spin-diffeomorphism that acts on π1(M) by an inner automorphism.

Then (f∗)n : R+(M)→ R+(M) is homotopic to the identity for some n ∈ N. Furthermore, n

can be chosen to divide 2|π1(M)|.

Corollary 4.1.23. Let d ≥ 7 and d 6≡ 1, 2(8). Let Md−1 be a simply connected, stably

parallelizable manifold. Then the action of Diff+(M) onR+(M) is homotopy-trivial.

For M = Sd−1 we get:

Corollary 4.1.24. The action of Diff+(Sd−1) onR+(Sd−1) in the homotopy category factors

through a free Z/2-action if d ≡ 1, 2(8) and is trivial otherwise.

Proof. The non-triviality is a result by Hitchin [Hit74, Theorem 4.7].

This recovers a version of a result of Hajduk:

Proposition 4.1.25 ([Haj88, Theorem 3.6]). The action of Diff+(Sd−1) on concordance

classes of psc metrics factors through a free Z/2-action if d ≡ 1, 2(8) and is trivial otherwise.

Corollary 4.1.26. For k ≥ 1, Diff+(CP2k+1) acts homotopy-trivially onR+(CP2k+1).

Corollary 4.1.27. Let X2k, k ≥ 3 be a stably parallelizable, simply connected, closed manifold

with H2k−i(X;Z/2) = 0 for i = 3, 5. Then Diff+(X × CP2) acts homotopy-trivial on

R+(X × CP2).

Remark 4.1.28. Note thatR+(CP2) is nonempty and hence so isR+(CP2 ×X) for any

manifold X .
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For the final example we note the following: From the Atiyah-Hirzebruch spectral

sequence and Proposition 4.1.5 we deduce that ΩSpin
∗ (X)⊗Q −→ ΩSO

∗ (X)⊗Q is an

isomorphism.

Corollary 4.1.29. Let Xd−k−1 be a simply connected, Spin-manifold with vanishing Pon-

tryagin classes and let M := X × Tk. Let f : M
∼=−→ M be a Spin-diffeomorphism

that acts on π1(M) by an inner automorphism. Then there exists an n ∈ N such that

(f∗)n : R+(M)→ R+(M) is homotopic to the identity.

4.2 The observer moduli space

One might be tempted to think that knowledge of the homotopy class of the action

map Diff(M)→ hAut(R+(M)) leads to knowledge of the quotientR+(M)/Diff(M).

The problem however is, that the action is not free, as there might exist a metric with

nontrivial isometry group. One can fix this in two ways: One replaces the quotient by

the Borel construction, i. e. by the homotopy quotient, or one restricts to a subgroup of

Diff(M) that acts freely onR+(M) andR(M). Under some assumptions this subgroup

will automatically consist of orientation preserving or even Spin-diffeomorphisms

which makes the results from the previous section applicable. So we pursue the latter

idea which originates from [AB02]. Let us start by giving definitions.

Definition 4.2.1. For x0 ∈ M we define Diffx0(M) to be the subgroup of Diff(M)

consisting of all diffeomorphisms f satisfying f(x0) = x0 and dfx0 = id: Tx0M →
Tx0M .

The following Lemma is a standard exercise in differential geometry. A proof can be

found in [BHSW10, Lemma 1.2] or in [TW15, Lemma 7.1.2].

Lemma 4.2.2. Let M be connected. Then the action of Diffx0(M) on R(M) and hence on

R+(M) is free.

Definition 4.2.3. We define the observer moduli spaces byMx0(M) := R(M)/Diffx0(M)

andM+
x0

(M) := R+(M)/Diffx0(M).

Since the action of Diffx0(M) is free we get a fiber bundle

Diffx0(M)→ R+(M)→M+
x0

(M)
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and hence a long exact sequence of homotopy groups ending in

· · · → π1(M+
x0

(M))→ π0(Diffx0(M))→ π0(R+(M))→ π0(M+
x0

(M))→ ∗

Now, we need to relate Diffx0(M) to Diffθ(M). Since for any f ∈ Diffx0(M), dfx0

is the identity, we can isotope f to be the identity on a small neighbourhood U of

x0. We get an isomorphism Diffx0(M)
∼=−→ Diff∂(M \ U) to the group of diffeomor-

phisms restricting to the identity on a neighbourhood of the boundary. We also have

π0(Diff∂(M \ U)) ∼= π1(BDiff∂(M \ U)). Let l̂∂ be a θ-structure on ∂(M \ U). Analo-

gously to Definition 1.2.4 we define for a fibration:

BDiffθ∂(M \ U) := EDiff∂(M \ U) ×
Diff∂(M\U)

Bun∂(T (M \ U)⊕ R, θ∗Ud)

where Bun∂ denotes the space of bundle maps that are equal to l̂∂ on the boundary.

We have the following lemma which is a special case of [GRW14, Lemma 7.16].

Lemma 4.2.4. Bun∂(T (M \ U), θ∗Ud) ' pt in either of two following cases:

1. M is a 2-connected Spin-manifold and B = BSpin(d).

2. M is a simply connected orientable manifold and B = BSO(d).

Proof. Let us abbreviate N := M \U . The inclusion ∂N ↪→ N is 2-connected in the first

and 1-connected in the second case. Therefore by [GRW14, Lemma 7.16] in both cases

Bun∂(TN, θ∗Ud) ' Bun∂(TN,Ud) ' pt.
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By Corollary 4.1.1 we get a commutative diagram in both of these cases:

. . . π0(Diffx0(M))

π1(BDiffx0(M))

π1(BDiff∂(M \ U))

π1(BDiffθ∂(M \ U))

π1(BDiffθ(M)) Ωθ
d

π0(R+(M)) π0(M+
x0

(M)) 0

[f ] [Tf ]

∼=

∼=

∼=

So, as soon as the map Γθ(M) −→ Ωθ
d is trivial we get a bijection π0(R+(M))

∼=−→
π0(M+

x0
(M)) and a surjection π1(M+

x0
(M)) � π1(BDiff∂(M \ U)). This happens for

example when d = 7, because Ωθ
7 = 0 in both cases.

We now give two detection results for the observer moduli space. The first is obtained

by applying the above to the work of Botvinnik, Ebert and Randal-Williams [BERW17]

together with Corollary 4.1.21:

Theorem 4.2.5. Let d ≥ 7 and let Md−1 be a 2-connected Spin-manifold.

1. If d ≡ 0(4) and all Pontryagin classes of M vanish, the spaceM+
x0

(M) has infinitely

many path components.

2. If d 6≡ 1, 2(8) and M is stably parallelizable, the map π0(R+(M)) −→ π0(M+
x0

(M))

is a bijection.

At the other end of the sequence we get a detection result for π1(M+
x0

(M)) for special

manifoldsM using the work of Galatius and Randal-Williams [GRW16] who computed

the fundamental group of BDiff∂(W 2n
g ) for W 2n

g := (Sn × Sn)#g the high-dimensional

genus g surface. Let BO(d)〈l〉 denote the l-connected cover of BO(d).
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Theorem 4.2.6. For g ≥ 5, n ≥ 3 and n 6≡ 0(4) there is a surjective map π1(M+
x0

(W 2n
g ))→

Ω
〈n〉
2n+1 ⊕Gn where Ω

〈n〉
2n+1 denotes the BO(2n+ 1)〈n〉-cobordism group and

Gn ∼=


(Z/2)2 if n is even

0 if n = 3, 7

Z/4 otherwise.

Proof. First we note that W 2n
g is 2-connected, stably parallelizable and Spin and so by

Proposition 4.1.14 we get that any mapping torus is Spin-nullbordant (here we use

n 6≡ 0 mod 4) implying that the map π1(M+
x0

(W 2n
g )) → π0(Diffx0(W 2n

g )) is surjective.

Above we computed that

π0(Diffx0(M)) ∼= π1(BDiff∂(W 2n
g \D)

and by [GRW16, Theorem 1.3] that π1(BDiff∂(W 2n
g \D) maps surjectively to Ω

〈n〉
2n+1 ⊕

Gn.

4.3 An H-space structure onR+(M)

In this section we apply Theorem 3.3.1 to construct a family of H-space multiplications

onR+(M) for certain manifolds M . We will show that all of these are equivalent and

that invertible elements do not depend on the chosen multiplication.

4.3.1 Definition and easy computations

M

W

XW

FIGURE 4.1: The θ-cobordism
XW : M q M  M .

Let us first fix the situation for this section: Let

d ≥ 7, let Md−1 be a manifold and let θ : B →
BO(d) be the stabilized tangential 2-type of M .

Let W : ∅ M be a θ-nullbordism of M .

This gives a map SW : R+(∅) → R+(M). Note

thatR+(∅) = {pt} and let eW := SW (pt). We also

have a θ-cobordism

XW := W op qW op qW : M qM  M
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as in Figure 4.1. Now, XW ∈ Ωθ
d

(
(M qM),M

)
and by Theorem 3.3.1, we get a map

µW := SXW : R+(M)×R+(M) −→ R+(M)

whose homotopy class only depends on the θ-cobordism class of W .

Theorem 4.3.1. The map µW defines a commutative and associative H-space structure on

R+(M) and the neutral element is given by eW .

Proof. First we show that eW really is the neutral element. We need to show that the

composition

R+(M) R+(M)×R+(M) R+(M)
id× eW µW

is homotopic to the identity. The first map is equal to S(M×I)qW and the composition

is given by

SXW ◦ S(M×I)qW = S(M×I)∪W opqWqdW ∼ S(M×I)∪(M×I) ∼ id

as the double of W is nullbordant by Proposition 1.3.3 (see Figure 4.2).

dW = W u Wop

FIGURE 4.2: eW is the neutral element.

For commutativity, the composition µW ◦ τ , where τ is the map switching the factors,

has to be homotopic to µW . The map τ however is given by the surgery map S for the

cobordism in Figure 4.3 and the composition of this cobordism with XW is bordant to

XW relative to the boundary (see Figure 4.3). This also implies that eW is a two-sided

unit.

𝜏

FIGURE 4.3: µV is commutative.

For associativity we need to show that the following diagram commutes:
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R+(M)×R+(M)×R+(M)

R+(M)×R+(M)R+(M)×R+(M)

R+(M)

µW × idid× µ
W

µWµW

Again, all maps are given by surgery maps and the proof is finished by Figure 4.4.

FIGURE 4.4: µV is associative.

Remark 4.3.2. 1. This proof shows how easy it is to work with this kind of “graphical

calculus”. It is always possible to write down the formulas, however the pictorial

computation is much more enlightening.

2. A word of warning is appropriate here: Using pictures to do computations can

be dangerous as illustrated by the following example: consider the cobordism

X := W op qW op qW qW : M qM  M qM (see Figure 4.5).

FIGURE 4.5

We then have two ways to decompose X : (W op q W ) q (W op q W ) = X =

XW q W . One might be tempted to think that then (µW , e) ∼ SXWqW ∼
S(W opqW )q(W opqW ) ∼ (id, id) implying that R+(M) is contractible. However,

this computation is however wrong, as one needs to consider the tangential

2-type of the outgoing boundary which is not connected in this case. SX is

obtained by making the structure map of X 2-connected and requiring that the
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structure map restricts to the one on the boundaries. Since both boundaries are

the same (as θ-manifolds), we deduce that the inclusion of both the incoming

and the outgoing boundary are both 2-connected. So, the obtained cobordism

X̃ must have two components with one incoming and one outgoing boundary

each. Hence, SX 6∼ SXWqW ∼ (µW , e). However: If the outgoing boundary is

connected, so is its tangential 2-type θ : B → BO(d) and one does not have to

worry about path components of the cobordism.

Corollary 4.3.3. π0(R+(M)) is an abelian monoid and π1(R+(M), eW ) is an abelian groups.

Example 4.3.4. By going through the definition of S we deduce that for the case

M = Sd−1 and W = D = Dd we have eD = gd−1
◦ .

4.3.2 Dependence on W

Let us analyze how this H-space structure depends on the nullbordism W : ∅  M

next. From now on the symbol “=” will denote equality in the homotopy category, i.e.

f = f ′ means f and f ′ are homotopic.

Lemma 4.3.5. Let U : M  M be a θ-cobordism and let SU : R+(M) → R+(M) be the

corresponding homotopy equivalence. Then

µW ◦ (SU , id) = µW (id,SU ) = SU ◦ µW .

Proof. Since W op qW is bordant to M × I , this lemma follows from Figure 4.6.

Let us give an immediate application.

Corollary 4.3.6. Let G ⊂ π0(R+(M)) be the group of invertible elements with respect to µW .

Then for any θ-cobordism U : M  M we have SU (G) = G.

Proof. Let g, g′ ∈ G such that µW (g, g′) = eW and let g′′ ∈ π0(R+(M)) such that

SU (g′′) = g′. Then by Lemma 4.3.5

µW (SU (g), g′′) = µW (g,SU (g′′)) = µW (g, g′) = e.

So, SU (g) is a unit and SU (G) ⊂ G. The other inclusion follows analogously: g =

SU (S−1
U (g)) = SU (SUop(g)) and by the above computation, SUop(G) ⊂ G.
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FIGURE 4.6

Now, let us analyze the dependence of this H-space structure on W : ∅  M . Let

V : ∅ M be another θ-nullbordism. We get a θ-cobordism W op q V : M  M and a

corresponding surgery map f := SW opqV .

Theorem 4.3.7.

1. The map f : (R+(M), µW )→ (R+(M), µV ) is an equivalence of H-spaces.

2. We have µW = f ◦ µV and eV = f(eW ).

3. If GW , GV ⊂ π0(R+(M)) denotes the respective set of units, we have GW = GV .

Proof. 1. By Corollary 3.1.6 we have SV opqW ◦ SW opqV ∼ id and so f is a homotopy

equivalence. For the homomorphism property we have the following computa-

tion:

W V

FIGURE 4.7: f is a homomorphism
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2. The first part follows from Figure 4.8

FIGURE 4.8

and the second part is handled by Figure 4.9.

FIGURE 4.9

3. For symmetry reasons it suffices to show that every µW -unit is a µV -unit. So, let

g ∈ GW . Then f(g) ∈ GV because f is a homomorphism and because f(eW ) = eV

and by Corollary 4.3.6 we have f(g) ∈ GV ⇐⇒ g ∈ GV .

The same proof also shows that this H-space structure is also independent of M :

Let M ′ be another (d − 1)-manifold with the same stabilized tangential 2-type. If

V : ∅ M ′ is a θ-nullbordism, then the map SW opqV : (R+(M), µW )→ (R+(M ′), µV )

is an equivalence of H-spaces.

4.4 Triviality and non-triviality criteria for the action map

In Subsection 4.1.2 we showed that for certain manifolds the mapping class group acts

trivially on the space of psc-metrics in the homotopy category. All those manifolds had

the property that every mapping torus was (rationally) nullbordant, no facts about the

diffeomorphism itself were needed there. In this section we first give criteria for the

action map to be trivial or nontrivial which have less restrictions on the manifolds they

apply to but require more knowledge about the action. The first one is a criterion for the

action map to be trivial which is proven using the H-space structure from the previous

section. Afterwards we derive a non-triviality criterion by an argument in the style of

[Car88] (cf. [Wal11, Example 1.1]). As an application we get a full characterization for

the action of Diff+(M) onR+(M) for simply connected spin-7-manifolds.

Theorem 4.4.1. Let d ≥ 7 and let Md−1 be a simply connected Spin-manifold which is

Spin-nullbordant. Let Ad be a closed Spin-manifold. Then SE(A) = SM×I q A : R+(M)→



Chapter 4 - Applications 73

R+(M) is homotopic to the identity if and only if SSd−1×I q A(g◦) and g◦ are homotopic in

R+(Sd−1).

Remark 4.4.2. In particular, for [ψ] = [f, L] ∈ ΓSpin(M) the map f∗ : R+(M)→ R+(M)

is homotopic to the identity if SSd−1×I q Tψ
(g◦) ∼ g◦.

Proof of Theorem 4.4.1. Let W : ∅  M and let D : ∅  Sd−1 denote the standard d-

disc. By Theorem 4.3.7 the map f := SDop q W : (R+(Sd−1), µD) → (R+(M), µW ) is

an equivalence of H-spaces. By Example 4.3.4 the neutral element eD is given by the

round metric g◦ and f(g◦) ∼ f(eD) ∼ eW by Theorem 4.3.7. We compute

SEA( ) = SM×I q A = µW (SM×I q A( ), eW ) = µW ( ,SM×I q A(eW ))

= µW ( ,SM×I q A ◦ f(g◦)) = µW ( , f ◦ SSd−1×I q A(g◦)),

where the last equality follows from the Figure 4.10.

M x [0,1]

W

Sd-1

D
A

Sd-1 x [0,1]

FIGURE 4.10

Now, µW ( , f ◦ SSd−1×I q A(g◦)) = id if and only if f ◦ SSd−1×I q A(g◦) ∼ eW which

happens if and only if SSd−1×I q A(g◦) ∼ g◦.

Next we give the non-triviality criterion.

Proposition 4.4.3. Let M be a (d− 1)-dimensional, simply connected Spin-manifold and let

W d be a closed Spin-manifold with Â(W ) 6= 0. Then SEW (g) 6∼ g for every psc-metric g on

M . In particular, SEW is not homotopic to the identity.

Proof. By Lemma B.4 we can perform (Spin-)surgery on M × [0, 1] q W to get an

admissible cobordism V : M  M . If SEW is homotopic to the identity there exists a

psc-metric G on V that restricts to the same metric g0 on both boundaries by Lemma

1.7.12 (see Remark 3.1.7 as well). We obtain a psc-metric on the manifold V ′ obtained
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by gluing the boundaries of V together along the identity. So, Â(V ′) = 0 by the

Lichnerowicz-formula and since Â is Spin-cobordism invariant we get

0 = Â(V ′) = Â(M × S1 qW ) = Â(W ).

We can now derive the result for 7-manifolds.

Corollary 4.4.4. Let M7 be a simply connected Spin-manifold and let f : M
∼=−→ M be a

Spin-diffeomorphism. Then the following are equivalent:

1. Â(Tf ) = 0.

2. Tf is Spin nullbordant.

3. f∗ is homotopic to the identity.

4. f∗g ∼ g for every g ∈ R+(M).

5. There exists a metric g ∈ R+(M) such that f∗g ∼ g.

Proof. The implications 3. ⇒ 4. and 4. ⇒ 5. are obvious and the implication 2. ⇒ 3

follows from Corollary 4.1.1. For 1.⇒ 2. we note that

ΩSpin
8
∼= Z⊕ Z ∼= 〈[HP2], [β]〉,

where β denotes the Bott manifold with Â(β) = 1 and sign(β) = 0. Furthermore,

sign(HP2) 6= 0 and Â(HP2) = 0. Since for Tf both these invariants vanish, it has to be

Spin-nullbordant. Finally 5.⇒ 1. is proven as follows: Let gt be an isotopy between

f∗g and g. Since isotopy of psc metrics implies concordance of psc metrics, there exists

a psc metric G on M × [0, 1] restricting to f∗g and g. Then G induces a psc metric on

Tf as one can identify the metrics on the boundary along f∗ and hence Â(Tf ) = 0.

Remark 4.4.5. 1. Since M is simply connected we have DiffSpin(M) � Diff+(M).

Hence the above Corollary classifies the action of Γ+(M) on R+(M) for every

simply connected 7-dimensional Spin-manifold.

2. Note that the implication 5.⇒ 1. does not require the restriction to dimension 7.
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In the 7-dimensional case we get a further factorization of the action map:

ΓSpin(M, l)

KO−8(pt)

π0(hAut(R+(M)))

Â(β)

SE(β)

η

Â ◦ T

This factorization is sharp in the sense that ker η = ker Â ◦ T . We close this chapter

with 2 questions:

Question 4.4.6. Let M be simply connected and spin. Is vanishing of the Â-genus of

W a sufficient condition for SEW to be homotopic to the identity onR+(M)?

If the answer to Question 4.4.6 were yes, we get the following commutative extension

of the diagram above.

ΓSpin(M, l)

ΩSpin
d

π0(hAut(R+(M)))

KO−d(pt)

In the 7-dimensional case, this would be implied by the following conjecture.

Conjecture 4.4.7. SE(HP2) ∼ id.
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The motivation for the second question is the fact that the kernel of the signature ho-

momorphism sign: ΩSO
∗ → Z is generated by mapping tori, i.e. for every W ∈ ker sign

there exists an oriented manifold Md−1 and an orientation preserving diffeomorphism

f ∈ Diff+(M) such that [Tf ] = [W ] ∈ ΩSO
d (cf. [Win71]). We consider the group

homomorphisms

ΩSpin
d −→ ΩSO

d
sign−→ Z

and we ask the following question.

Question 4.4.8. Which elementsW ∈ ker sign with nontrivial Â-genus are in the image

of the homomorphism ΩSpin
d −→ ΩSO

d , i. e. can be represented by the mapping torus of

a Spin-diffeomorphism on a Spin-manifold?

If M were a simply connected Spin-manifold of positive scalar curvature with a Spin-

diffeomorphism (f, L) whose mapping torus has non-vanishing Â-genus, we would

get a detection result for every curvature condition that implies positive scalar curva-

ture by Proposition 4.4.3.



5
Surgery stable curvature conditions

In this chapter we generalize our main result to other curvature conditions. The key

observation is that the two main (differential) geometric ingredients that go into the

proof are: The surgery theorem (1.7.8) by Chernysh [Che04b, Theorem 1] and [Wal11,

Lemma 1.9] which says that double torpedo metrics and mixed torpedo metrics on

the sphere lie in the component of the round metric. We call this second property the

mixed torpedo condition. Recent work of Kordass [Kor18] improves Chernysh’s result

from positive scalar curvature to other curvature conditions1. Afterwards we use

this improved surgery theorem to indicate how one can upgrade a detection result of

Botvinnik–Ebert–Randal-Williams [BERW17].

5.1 The improved surgery theorem

Let us fix c ≥ 3 and let C be a deformable, codimension c surgery stable curvature condition

of dimension (d − 1).2 We denote by RC(M) the space of Riemannian metrics satisfying

C. Note that saying a metric satisfies C only makes sense for metrics on manifolds

1This is built on work of Hoelzel [Hoe16] in the same way Chernysh’s result [Che04b] is built on
Gromov-Lawson’s surgery theorem [GL80].

2For a definition and examples see [Kor18, Section 2.1] and [Hoe16, Introduction].
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of dimension (d − 1). The round metric gk−1
◦ of radius 1 satisfies gk−1

◦ + geucl ∈
RC(Sk−1 ×Rd−k) for ε small enough and k ≥ c (cf. [Kor18, Remark 2.8]) and for every

metric gN on a manifold Nk−1 there exists a torpedo metric gd−ktor ∈ R(Dd−k)g◦ such

that gN + gtor ∈ RC(N ×Dk)gN+g◦ provided that d−k ≥ 3 (cf. [Kor18, Corollary 2.27]).

We define

RC(M,ϕ) := {g ∈ RC(M) : ϕ∗g = g◦ + gtor}

The following is the improved parametrized surgery theorem.

Theorem 5.1.1 ([Kor18, Theorem 3.5]). Let C be a deformable, codimension c surgery stable

curvature condition, M be a (d − 1)-manifold and let ϕ : Sk−1 ×Dd−k ↪→ M be a surgery

datum with k ≤ d− c. Then the inclusion

RC(M,ϕ) ↪→ RC(M)

is a (weak) homotopy equivalence.

Example 5.1.2. Let us list some curvature conditions to which Theorem 5.1.1 applies.

1. Positive scalar curvature is a deformable, codimension 3 surgery stable curvature

condition, so Kordass’ result really is a generalization of Chernysh’s theorem.

2. Let (M, g) be a Riemannian manifold and let P ⊂ TxM be a p-dimensional

subspace with (Ei) an orthonormal basis of P⊥. We define the p-curvature of g

by sp(g)(P ) :=
∑n−p

i,j=1 secg(〈Ei, Ej〉).3 Then positive p-curvature is a deformable,

codimension p+ 3-surgery stable curvature condition (see [Lab97] and [Kor18,

Example 2.20]).

3. In a similar fashion, one can define q-Ricci curvature. Let Q ⊂ TxM be a q-

dimensional subspace with (Ei) as an orthonormal basis. We define the q-Ricci-

curvature of g by Ricq(g)(Q) =
∑q

i=1 Ric(g)(Ei).4 Then, for 2 ≤ q ≤ d− 2,

positive q-Ricci curvature is a deformable, codimension (d− q + 1)-surgery stable

curvature condition (see [Wol12] and [Kor18, Example 2.20]).

All these examples are contained in positive scalar curvature, so for all these conditions

one hasRC(M) ⊂ Rpsc(M) =: R+(M).

It is not clear if deformable, codimension c surgery stable curvature conditions also

encode the mixed torpedo condition, i. e. that every metric satisfying C also satisfies the
3Clearly, 0-curvature is scalar curvature and (d− 2)-curvature is the sectional curvature. We also see

that s1(g)(P ) = scalg − 2Ric(P ).
4(d− 1)-Ricci-curvature is scalar curvature and 1-Ricci curvature is ordinary Ricci curvature.
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mixed torpedo condition. For the above examples it should be true and we will assume

it for the succeeding section.

5.2 Generalization of Theorem 3.3.1

In this section we generalize our main Theorem 3.3.1. All our results carry over

without any change in the proofs. However, the dimension restriction changes. Let

m := max{c+ 4, 2c}.

Remark 5.2.1. With the same proof as in Theorem 1.6.2 one can show the following:

Let a, b ∈ {−1, 0, . . . , d}, W be of dimension at least d ≥ max{a + 5, b + 5, a + b + 2}
and let the inclusions (W,M0) and (W,M1) be a- and b-connected, respectively. Then

Ha+1,d−b−1(W ) is path-connected.

Theorem 5.2.2 (cf. Theorem 2.3.3). For d ≥ m(c), the functor P−1,c−1 is an equivalence of

categories.

From now on let c ≥ 3 and let us fix be a deformable codimension c surgery stable

curvature condition C that encodes the mixed torpedo condition.

Lemma 5.2.3 (cf. Definition 3.1.1, Lemma 3.1.3 and Corollary 3.1.5). Let d ≥ m(c). Then

there is a functor

SC : Bord−1,c−1
d −→ hTop

which satisfies:

1. SC(M) = R+(M)

2. SC(M×I,id,f) = f∗

3. SCtr ϕ,id,id(g) = SCϕ .

Lemma 5.2.4 (cf. Lemma 3.2.1). Let d ≥ 2c+ 1 and let M0, M1 be two (d− 1)-manifolds,

let W = [W, id, id] ∈ morBord−1,c−1
d

(M0,M1) and let Φ: Sk−1 ×Dd−k+1 ↪→ Int W be an

embedding with c ≤ k ≤ d− c. Then SCW ∼ S
C
WΦ

.

Now, let θ : B → BO(d) be a fibration which is once-stable. Let Ω̂θ
d,c−1 denote the

category which has (d− 1)-dimensional θ-manifolds (Md−1, l̂) as objects and let the

set of morphisms from M0 to M1 be given by Ωθ
d(M0,M1) if the underlying structure

map l : M1 → B is (c− 1)-connected and be empty otherwise.
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Theorem 5.2.5 (cf. Theorem 3.3.1). Let d ≥ 2c+ 1. Then there is a unique functor

SC : Ω̂θ
d,c−1 −→ hTop

such that

1. SC(M) = RC(M),

2. SC(M × I, id, f−1) = [g 7→ f∗g],

3. SC(tr ϕ, id, id) = SCϕ .

Remark 5.2.6. One can possibly improve the dimension restriction from d ≥ 2c+ 1 to

d ≥ m(c). The 2-index theorem only requires d ≥ m(c) but for the use of Lemma A.1

in the proof of Lemma 5.2.4 (cf. Lemma 3.2.1) one needs d ≥ 2c+ 1. It is possible that

Lemma A.1 also holds for one dimension smaller (cf. Remark A.2.4). This would mean

that the restriction becomes d ≥ 7 for c = 3 and d ≥ 2c for c ≥ 4.

Corollary 5.2.7 (cf. Corollary 4.1.1). Let d ≥ 2c + 1 and let θ : B → BO(d) be the

stabilized tangential (c− 1)-type of Md−1. Then there is a group homomorphism SEC : Ωθ
d →

π0

(
hAut(RC(M))

)
such that the following diagram commutes:

Γθ(M, l̂)

Ωθ
d

π0(hAut(RC(M)))

[f ]

[Tf ] [W ]

SEC(W )g 7→ f∗g

Some of the examples computed in Section 4.1 have analogues for other deformable

codimension c surgery stable curvature conditions. Let Ω
〈k〉
d denote the cobordism

group of d-dimensional BO〈k〉-manifolds. The key observation is the following:

Proposition 5.2.8. The forgetful map Ω
〈k〉
d ⊗ Q −→ Ω

〈1〉
d ⊗ Q = ΩSO

d ⊗ Q is injective for

every k ≥ 2.

Proof. In this proofHn(X) denotes the rational homology ofX . By [KL05, Theorem 2.1]

there is an isomorphism Ω
〈k〉
∗ ⊗Q

∼=−→ H∗(BO〈k〉). We show that the map BO〈l〉 −→
BO〈l−1〉 induces a monomorphism in rational homology for 2 ≤ l ≤ k. The homotopy
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groups of BO are given by

πi(BO) =


Z if i ≡ 0(4)

Z/2Z if i ≡ 1, 2(8)

0 otherwise.

So, BO〈l〉 = BO〈l − 1〉 for l ≡ 3, 5, 6, 7(8) and we get fibrations

BO〈4m〉 −→ BO〈4m− 1〉 −→ K(Z, 4m)

BO〈8m+ e〉 −→ BO〈8m+ e− 1〉 −→ K(Z/2Z, 8m+ e)

for e = 1, 2. The rational cohomology of K(Z/2Z, 8m + e) vanishes. The base space

of these fibrations is simply connected by our assumption on l and so by the Leray–

Serre spectral sequence the map BO〈l〉 −→ BO〈l − 1〉 induces an isomorphism in

rational homology unless l = 4m. If l = 4m this spectral sequence gives E2
p,q =

Hp(K(Z, 4m))⊗Hq(BO〈4m〉)⇒ Hp+q(BO〈4m− 1〉). The entries on the E2-page are

zero if either p or q is not divisible by 4. Therefore every differential of the spectral

sequence is trivial and the spectral sequence collapses at the E2-page. We therefore

have

Hn(BO〈4m〉) ↪→
⊕
p+q=n

Hp(K(Z, 4m))⊗Hq(BO〈4m〉)
∼=−→ Hn(BO〈4m− 1〉)

Example 5.2.9. For c = 3, 4, we have BO(d)〈c − 1〉 = BSpin(d) and for 5 ≤ c ≤ 8,

BO(d)〈c− 1〉 = BString(d).

We can now state analogues for two examples from Section 4.1.

Corollary 5.2.10. Let d ≥ 2c+ 1 and let Md−1 be a c− 2-connected BO(d)〈c− 1〉 manifold.

If d ≡ 0(4) let all Pontryagin classes of M vanish. Let f : M
∼=−→ M be an orientation

preserving diffeomorphism. Then (f∗)n : RC(M)→ RC(M) is homotopic to the identity for

some n ∈ N.

Corollary 5.2.11. Let d ≥ 2c + 1 and let Md−1 be a BO(d)〈c − 1〉 manifold with finite

fundamental group and c− 2-connected universal cover. If d ≡ 0(4) let all Pontryagin classes

of M vanish. Let f : M
∼=−→M be a BO(d)〈c− 1〉-diffeomorphism acting on the fundamental

group by an inner automorphism. Then (f∗)n is homotopic to the identity for some n ∈ N.
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For c = 3, 4 we have BO(d)〈c− 1〉 = BSpin(d) and even more results from Chapter 4

carry over. If c = 3 this works for all results and if c = 4 one has to consider 2-connected

manifolds instead of simply connected manifolds.

5.3 A detection result forRC(M)

In this section we use Kordass’ Theorem 5.1.1 to indicate how one can generalize the

work of Botvinnik, Ebert and Randal-Williams [BERW17]. Let c ∈ {3, . . . , d− 3} and

let C be a deformable, codimension c surgery stable curvature condition that implies

positive scalar curvature. Also, let ι : RC(M) ↪→ R+(M) denote the inclusion. The

following Lemma states the existence of stable metrics in a special case.

Lemma 5.3.1 ([BERW17, Theorem 2.6]). Let d ≥ 2c and let V d−1 : Sd−2  Sd−2 be a

(c− 2)-connected, BO(d)〈c− 1〉-cobordism. Also, assume that V is BO(d)〈c− 1〉-cobordant

to Sd−2 × [0, 1] relative to the boundary. Then there exists a metric g ∈ RC(V )g◦,g◦ with

the following property: If W : Sd−2  Sd−2 is cobordism and h ∈ R(Sd−2) is a boundary

condition such that h+ dt2 ∈ RC(Sd−2 × [0, 1]) then the two gluing maps

µ( , g) : RC(W )h,g◦ −→ RC(W ∪ V )h,g◦

µ(g, ) : RC(W )g◦,h −→ RC(V ∪W )g◦,h

are homotopy equivalences.

Proof. By assumption there exists a relative BO(d)〈c− 1〉-cobordism X : V  Sd−2 ×
[0, 1] and by performing surgery on the interior of X we may assume X has no

handles of indices 0, . . . , c − 1, d − c + 1, . . . , d (cf. Lemma B.4 and Lemma 1.6.5).

So Sd−2 × [0, 1] is obtained from V by a sequences of surgeries with these indices.

Let ϕ : Sk−1 ×Dd−k ↪→ V be such a surgery embedding with k ∈ {c, . . . , d − c} and

let g ∈ RC(V )g◦,g◦ and let g′ ∈ [SCϕ (g)] ∈ π0(RC(Vϕ)). The map SCϕ is a homotopy

equivalence and so gluing on the metric g is a homotopy equivalence if and only if

gluing on g′ is a homotopy equivalence.

Now gluing in (Sd−2× [0, 1]), g◦+ dt2) is a homotopy equivalence and so by the above

argument there exists a metric g ∈ RC(V )g◦,g◦ as required.
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Let Md−1 be a manifold with boundary ∂M and let h ∈ R(∂M) such that h + dt2 ∈
RC(∂M × [0, 1]). The space RC(M)h has an action of Diff∂(M), the group of diffeo-

morphisms which are the identity on a neighbourhood of ∂M . We get an action map

ηC : Diff∂(M)→ hAut(RC(M)h) which induces

Γ∂(M) := π0(Diff∂(M)) −→ π0(hAut(RC(M)h)) (5.1)

The psc-analog of the following is one of the main ingredients in the proof of [BERW17,

Theorem B].

Theorem 5.3.2 ([BERW17, Theorem 4.1]). Let d ≥ 2c and let Md−1 be a (c− 2)-connected,

BO(d)〈c− 1〉-manifold with boundary ∂M = Sd−2. Also, assume that M is BO(d)〈c− 1〉-
cobordant to Dd−1 relative to the boundary. Then the image of the map (5.1) for h = gd−2

◦ is

an abelian group.

For the proof we will use the following Lemma of Eckmann-Hilton style.

Lemma 5.3.3 ([BERW17, Lemma 4.2]). Let C be a nonunital topological category with objects

the integers and let G be a topological group which acts on C, i.e. G acts on all morphism spaces

and the composition in C is G-equivariant. We will denote the composition of x and y by x · y.

Suppose that

1. C(m,n) = ∅ for n ≤ m.

2. For each m 6= 0 there exists a um ∈ C(m,m+ 1) such that the composition maps

um · : C(m+ 1, n)→ C(m,n) for n > m+ 1

· um : C(n,m)→ C(n,m+ 1) for n < m

are homotopy equivalences.

3. There exists an x0 ∈ C(0, 1) such that the composition maps

x0 · : C(1, n)→ C(0, n) for n > 1

· x0 : C(n, 0)→ C(n, 1) for n < 0

are homotopy equivalences.

4. The G-action is trivial unless m ≤ 0 and 1 ≤ n.

Then for f, g ∈ G the maps f, g : C(0, 1)→ C(0, 1) commute up to homotopy.
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Proof of Theorem 5.3.2. This is completely analogous to [BERW17, Proof of Theorem

4.1]. Consider a closed disk D ⊂ Sd−2 × (0, 1). By Theorem 5.1.1 there exists a

metric h ∈ RC(Sd−2 × [0, 1], D; gd−1
tor )gd−2

◦ ,gd−2
◦

which is isotopic to the product metric

gd−2
◦ + dt2 relative to the boundary. By cutting out this disk we obtain a metric h on

T := (Sd−2 × [0, 1]) \ int(D) that satisfies C. We denote by P = Sd−2 the boundary

component created by cutting out this disk. We get the composition

RC(M)g◦
µh−→ RC(M ∪Sd−2×{0} T )g◦,g◦

µgtor−→ RC(M ∪Sd−2×{0} T ∪P D)g◦

given by gluing in (T, h) and (D, gtor). The composition is given by gluing in h

which is homotopic to gluing in g◦ + dt2 and so it is a homotopy equivalence. The

right-most map is a homotopy equivalence by Theorem 5.1.1 and so µh also is a

homotopy equivalence. Let V := M ∪Sd−2×{0}T and let us consider this as a cobordism

Sd−2 = P  Sd−2 × {1} = Sd−2.

We now apply Lemma 5.3.3 to the following scenario: Let G := Diff∂(M) and let

C(0, 1) = RC(V )g◦,g◦ . Furthermore, let

C(m,n) =


RC(Sd−2 × [m, 0] ∪ V ∪ Sd−2 × [0, n])g◦,g◦ for m ≤ 0, n ≥ 1

RC(Sd−2 × [m,n])g◦,g◦ for m < n ≤ 0 or n > m ≥ 1

∅

Let G act on C(m,n) by extending a diffeomorphism f ∈ Diff∂(M) by the identity and

then acting via pullback, i. e. G acts on M via pullback and trivially everywhere else.

With this action the composition given by gluing metrics is obviously G-equivariant.

For m 6= 0 let um := gd−2
◦ + dt2 ∈ C(m,m + 1) and by Lemma 5.3.1 there exists an

x0 ∈ C(0, 1) such that the hypothesis of Lemma 5.3.3 is satisfied and so the action

of Diff∂(M) on RC(V )g◦,g◦ factors through an abelian group. The Theorem follows

because the gluing map µh : RC(M)g◦ → RC(V )g◦,g◦ is a Diff∂(M)-equivariant homo-

topy equivalence.

Remark 5.3.4. This can also be proven by using a version of Corollary 4.1.1 for manifolds

with boundary and using Lemma 4.2.4 as in Section 4.2. This comes at the price of

requiring that M is (c− 1)-connected and that C encodes the mixed torpedo condition.

We will now give an outline how one can possibly generalize the detection result from

[BERW17]. Let θ : BO(d− 1)〈c− 1〉 → BO(d− 1) be the (c− 1)-connected cover. Let

W0 be a manifold of dimension d− 1 = 2n ≥ 2c which is BO〈c− 1〉-cobordant to D2n
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and that satisfies that the structure map l : W0 → BO(d− 1)〈c− 1〉 is c− 1-connected.

Using Theorem 5.3.2 one can construct a map ρ : Ω∞+1MTθ −→ RC(W0) in the same

way as in [BERW17, Chapter 4]. For c = 3, 4 we have BO(d)〈c − 1〉 = BSpin(d) and

one should be able to adjust the index theoretic arguments from [BERW17, Chapter 3]

to show that the composition

Ω∞+1MTSpin(d− 1) RC(M)h R+(M)h Ω∞+dKO
ρ inddiffg0

where is weakly homotopic to the loop map of Âd−1. Employing a propagation theorem

in the style of [BERW17, Proposition 3.18] this can then be upgraded to hold for all

Spin-manifolds of dimension 2n.

Furthermore, if C is stable, it is possible to define a restriction map res : RC(W ) →
RC(M) for a manifold W with boundary M . It has been told to us by J.B. Kordaß that

this is a Serre-fibration as well and so the above should imply a corresponding result

for odd-dimensional manifolds of dimension at least 2c + 1 (cf. [BERW17, Section

3.6]). Therefore one should get the same detection results as in [BERW17] for positive

(d− 2)-Ricci curvature on manifolds of dimension at least 6. If one considers manifolds

of dimension at least 8, one should obtain these results for positive 1-curvature and

positive (d− 3)-Ricci curvature, too.

It is however unclear if the map inddiffg0 ◦ ρ can also be used to detect families of

metrics satisfying a deformable codimension c surgery stable curvature condition if

c ≥ 5.





A
Multijet-transversality

In this chapter we will give a proof of the following two lemmas using Multijet-

transversality.

Lemma A.1. Let W d, d ≥ 2k + 1 be a manifold and let V ⊂ W be a codimension 0

submanifold such that (W,V ) is (k − 1)-connected. Then Emb(Sk−1 × Dd−k+1, V ) −→
Imm(Sk−1 ×Dd−k+1,W ) is a π0-bijection.

Lemma A.2. Let h0, h1 : W d → [0, 1] be Morse functions. Then there exists a generic path of

generalized Morse functions connecting them.

A.1 Jet bundles

In this section we recall the notion of jet bundles and jet transversality. This is a recollec-

tion from [GG73].

Definition A.1.1 ([GG73, pp. 37]). Let M,N be smooth manifolds, p ∈ M and let

f, g : M → N be smooth maps with f(p) = g(p). We say

1. f has first order contact with g at p if dfp = dgp as mappings TpM → Tf(p)N .
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2. f has k-th order contact with g at p if df has (k − 1)st order contact with dg at

every point in TpM . This shall be written as f ∼k g at p.

3. We denote by Jk(M,N)p,q the equivalence classes of maps f : M → N satisfying

f(p) = q under the relation f ∼k g at p.

4. We define

Jk(M,N) :=
⋃

(p,q)∈M×N

Jk(M,N)p,q

An element of Jk(M,N) is called a k-jet (of mappings) from M to N .

5. Let σ ∈ Jk(M,N). Then there exist (p, q) ∈M×N such that σ ∈ Jk(M,N)p,q. We

call p the source and q the target of σ. We define the source map α : Jk(M,N)→M

and target map β : Jk(M,N)→ N .

6. For f : M → N we denote by jkf : M → Jk(M,N) the map that sends p to the

equivalence class of f in Jk(M,N)p,f(p).

Definition A.1.2 ([GG73, Definition 4.1]). Let M,N be smooth manifolds and f : M →
N smooth. Let X be a submanifold of N and p ∈ M . We say that f intersects X

transversely at p (denoted by f t X at p) if either f(p) /∈ X or f(p) ∈ X and Tf(p)N =

Tf(p)X + dfp(TpM). If A ⊂M , f is defined to intersect X transversely on A (denoted by

f t X on A) if f t X at all p ∈ A. If A = M we simply write f t X .

Theorem A.1.3 ([GG73, Theorem 4.4]). Let M,N,X, f as above and assume that f t X .

Then f−1(X) is a submanifold of M and codim f−1(X) = codim (X). In particular, if

codim X = dimM and M is compact, f−1(X) is a finite collection of points.

Definition A.1.4 ([GG73, Definition 3.2]). Let F be a topological space. A subset G of

F is residual if it is the countable intersection of open dense subsets. F is called a Baire

space if every nonempty residual set is dense.

Proposition A.1.5 ([GG73, Proposition 3.3]). C∞(M,N) with the C∞-topology is a Baire

space.

Definition A.1.6 ([GG73, p. 57]). Let f : M → N , s ∈ N and let M (s) := {(x1, . . . , xs) ∈
M s | xi 6= xj for i 6= j}. Furthermore, let Jks (M,N) := (αs)−1(M (s)), the s-fold k-

jet bundle, where αs denotes the s-fold product of the map α. We define the map

jks f : M (s) → Jks (M,N) by jks f(x1, . . . , xs) := (jkf(x1), . . . , jkf(xs)).

Corollary A.1.7. Let f ∈ C∞(M,N) and let X ⊂ Jks (M,N) be a submanifold such that

jks f t X . Then (jks f)−1(X) is a submanifold of M (s) of dimension s · dimM − codim X .
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Theorem A.1.8 (Multijet Transversality Theorem, [GG73, Theorem 4.13]). Let M,N be

smooth manifolds, X ⊂ Jks (M,N) be a submanifold and let

TX := {f ∈ C∞(M,N) | jks f t X}.

Then TX is a residual subset of C∞(M,N) and hence nonempty.

There also is a relative version of the Multijet Transversality Theorem.

Theorem A.1.9 (Relative Multijet Transversality Theorem). Let M,N be smooth mani-

folds, X ⊂ Jks (M,N) a submanifold. Let furthermore A ⊂M be closed and f0 : M → N be

a smooth map such that jks f0 t X on an open neighbourhood U of A. Then there is a map g

arbitrarily close to f0 (in the C∞-topology) such that f0|A = g|A and jks g t X .

Sketch of proof. The nonrelative case is done in [GG73, Theorem 4.9 and Theorem 4.13],

we will indicate which changes are needed for the relative version. We will further

only sketch this proof for the case of s = 1, the changes for s ≥ 2 are the same as

in [GG73, Proof of Theorem 4.13]. First one chooses a countable set of open subsets

Xr ⊂ X , r ∈ N such that

1. Xr ⊂ X \ α−1(A) and ∪r≥0Xr = X \ α−1(A).

2. α× β(Xr) ⊂ Vr × V ′r for coordinate neighbourhoods Vr ⊂M,V ′r ⊂ N such that

Vr is contained in M \A.

3. Xr is compact.

For B ⊂ X one defines

TB := {g ∈ C∞(M,N) | g t X at x for every x ∈M such that jskg(x) ∈ B and g = f0 on A}.

and shows that TXr is open and dense in T∅. This works along the same lines as in

[GG73, Proof of Lemma 4.14]. Then

T := ∩
r≥0

TXr =

{
g ∈ C∞(M,N) :

g t X at x for every x with jskg(x) ∈ Xr

and every r ≥ 0 and g|A = f0|A

}

and hence every element of T is transverse to X and agrees with f0 on A. Since T∅ is a

Baire space T is dense. Therefore there is a map as requested in the Corollary.
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A.2 Applications

We first need to encode properties of maps into conditions on jets. Let ∆n(X) denote

the diagonal in X×n. We define

Sr(X,Y ) := {σ ∈ J1(X,Y ) | rank(σ) = dimY − r}.

This is a submanifold of the jet space for all r ≥ 0.

Proposition A.2.1 ([GG73, Lemma 5.1 and Theorem 5.7]). 1. f : X → Y is an im-

mersion if and only if j1f(X) ∩
(
∪r≥1Sr(X,Y )

)
= ∅.

2. f : X → Y is injective if and only if j1
2f(X) ∩ (β2)−1∆2(X) = ∅.

Proposition A.2.2. An injective immersion from a compact manifold into a Hausdorff space

is an embedding.

Proof. This is clear, because in this case an injective map is a homeomorphism onto its

image.

Proposition A.2.3 ([GG73, Theorem 5.4]). We have codim (Sr(R× Sk−1,W )) = r(d−
k + r + 1) and codim (∆2(W )) = d.

Before we can give the proof of Lemma A.1 we need a few preparations.

Proof of Lemma A.1. We will show that both maps

Emb(Sk−1 ×Dd−k+1, V )
(1)−→ Emb(Sk−1 ×Dd−k+1,W )

(2)−→ Imm(Sk−1 ×Dd−k+1,W )

are π0-bijections. Let us consider (1) first. Let j ∈ Emb(Sk−1 × Dd−k+1,W ). Since

(W,V ) is (k − 1)-connected, j|Sk−1×{0} is homotopic to a map f : Sk−1 ↪→ V which in

turn is homotopic to an embedding f ′ : Sk−1 ↪→ V by the Whitney embedding theorem.

We need to turn this path into a path of embeddings. For this we define

Ar := {σ ∈ J1(R× Sk−1,W ) : σt ∈ Sr(Sk−1,W )}.

Then codim Ar = r · (d − (k − 1) + r) and if d ≥ 2k − 1, we have codim Ar > k

for all r ≥ 1. If F : [0, 1] × Sk−1 → W is a path such that j1F t Ar it also satisfies
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j1F (R× Sk−1) ∩Ar = ∅ and hence is a path of immersions. If furthermore j0
2F ((R×

Sk−1)(2)) ∩ (β2)−1(∆2(W )) = ∅, then F is a path of embeddings such that F (t, ) and

F (t′, ) have disjoint images for t 6= t′. For d ≥ 2k + 1 we have codim ∆2(W ) > 2k =

2 · dim(R × Sk−1). It follows from multijet transversality that the set of such paths

F is residual. If j|Sk−1×{0} and f ′ have disjoint images (which we can arranged by

isotoping f ′), then by relative multijet transversality there is a path of embeddings

connecting them. By the isotopy extension theorem this can be extended to an isotopy

of j and the map (1) is π0-surjective. For π0-injectivity let j, j′ be embeddings into V

that are isotopic through embeddings into V . Since (W,V ) is (k − 1)-connected this

path can be homotoped into V and we can use the same argument as above.

Let us now consider map (2) from above. We define the following intermediate space

Imm0(Sk−1 ×Dd−k+1,W ) := {f ∈ Imm(Sk−1 ×Dd−k+1,W ) : f |Sk−1×{0} is injective}.

We use the criterion from Proposition B.2 to show that the inclusion

Emb(Sk−1 ×Dd−k+1,W ) ↪→ Imm0(Sk−1 ×Dd−k+1,W )

is a weak equivalence. Let G0 : Dn → Imm(Sk−1 ×Dd−k+1,W ) such that G0(Sn−1) ⊂
Emb(Sk−1 ×Dd−k+1,W ). Since the disk Dn is compact, there exists an ε > 0 such that

G0(x)|Sk−1×Dd−k+1(ε) is also injective hence an embedding because the source is com-

pact. A homotopy of G0 into Emb(Sk−1 ×Dd−k+1,W ) is then given by Gλ(x)(p, v) :=

G0(x)(p, (1 − λ(1 − ε))v) for (p, v) ∈ Sk−1 × Dd−k+1. Thus it suffices to show that

Imm0(Sk−1 × Dd−k+1,W ) → Imm(Sk−1 × Dd−k+1,W ) is a π0-bijection. Let j ∈
Imm(Sk−1 × Dd−k,W ). Then j|Sk−1×{0} is arbitrarily close to an embedding by the

Whitney embedding theorem and since immersions are open in the space of smooth

maps there is regular homotopy of j such that j|Sk−1×{0} is injective. So the map is

π0-surjective. For injectivity let j, j′ ∈ Imm0(Sk−1 ×Dd−k+1,W ) be regularly homo-

topic and let F denote such a homotopy. The path F |Sk−1×{0} connecting j|Sk−1×{0}

and j′|Sk−1×{0} is homotopic to an isotopy f by relative Multijet transversality with

the same argument as above. We extend this isotopy to a path F ′ connecting j and j′.

Because immersions form an open subspace and because f can be chosen arbitrarily

close to F |Sk−1×{0} we may assume that F ′ is a regular homotopy that is injective when

restricted to Sk−1 × {0}.
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Remark A.2.4. Lemma A.1 should also be true for d ≥ 2k, since the given proof

constructs a path such that ft and ft′ even have disjoint images for t 6= t′ which is not

required.

Let us now turn to Morse functions. It is well known that the space of generalized

Morse functions is connected, so we only need to show that there exists a generic path.

We define

Sr(X) := Sr(X,R)

Sn(X) := (S1(X)×n) ∩ (βn)−1(∆n(R)) ⊂ J1
n(X,R)

S1,q(X) := {σ ∈ J2(X,R) | σ ∈ S1(X) and rank(d2fp) = dimX − q if [f ] = σ}

S̃1,1(X) := {σ ∈ J3(X,R) | σ ∈ S1,1(X) and d3f 6= 0 if [f ] = σ}

S1,1(X) := {σ ∈ J3(X,R) | σ ∈ S1,1(X) and d3f = 0 if [f ] = σ}.

Proposition A.2.5. Let h be a path of generalized Morse functions.

1. j3ht ∩ S̃1,1(W ) 6= ∅ and j3ht ∩ S1,1(W ) = ∅ ⇐⇒ ht has a birth-death-singularity.

2. j3ht(p) t S1,1(W ) ⇐⇒ p is a birth-death-point which is generically unfolded by h.

3. j1
2ht(W ) ∩ S2(W ) 6= ∅ ⇐⇒ ht has two critical points with the same value.

4. j1
3ht(W ) ∩ S3(W ) 6= ∅ ⇐⇒ ht has three critical points with the same value.

Proof. 2. is [Igu88, Proposition 2.4, p.307]. The rest of the proof works by simply

deciphering the conditions on submanifolds.

Proposition A.2.6. All of the above are submanifolds of the respective jet spaces and for q ≥ 1

we have:

codim S1,q(W ) = d+
q(q + 1)

2

codim S̃1,1(W ) = d+ 1

codim S1,1(W ) > d+ 1.

codim Sn(W ) = n(d+ 1)− 1.
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Proof. Let us consider S1,q(W ) first. Locally we have (compare [GG73, Lemma 2.6 and

Theorem 2.7])

J2(W,R) ∼= W × R×Hom(Rd,R)× Symd

S1,q(W ) ∼= W × R× 0 × {A ∈ Symd | rank(A) = d− q}︸ ︷︷ ︸
=:Symq

d

So we need to compute the codimension of Symq
d in Symd. This is analogous to [GG73,

Lemma 5.2]. If a matrixA has rank d−q, there is a basis of Rd such thatA =

(
B C

CT D

)
where B is an invertible (d − q) × (d − q)-matrix and B and D are symmetric. Then

there is a neighbourhood U of A such that the map

g : U → Symq, g

(
B C

CT D

)
= D − CTBC

has 0 as a regular value and f−1(0) = Symq
d which is therefore a submanifold of Symd

with codim Symq
d = dim Symq = q(q+1)

2 .

For S̃1,1(N) we note that S1,1(N) can also be seen as a submanifold of J3(N,R) (as the

preimage of the projection map J3(N,R)→ J2(N,R)) and the additional condition on

S̃1,1(N) is an open condition, so S̃1,1(N) is again a submanifold and its codimension is

the same as the one of S1,1(N), namely n+ 1.

The estimate on S1,1(W ) follows from the fact that d3f = 0 means that the 3-jet of f is

0 and therefore this is a submanifold of S1,1(N) of strictly positive codimension.

For the last equality we note that

J1
n(W,R) ∼= W×n × Rn ×Hom(Rd,R)n

Sn(W ) ∼= W×n ×∆n(R)× 0

and so codim Sn(W ) = n− 1 + nd.
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Proof of Lemma A.2. The proof will now work by encoding the desired properties of

the path ht into conditions on the jets of ht. We define

A := {σ ∈ J3(R×W,R : σt ∈ S1,1}

Ã := {σ ∈ J3(R×W,R : σt ∈ S̃1,1}

A := {σ ∈ J3(R×W,R : σt ∈ S1,1}

Bn := {σ ∈ J1
n(R×W,R : σt ∈ Sn}

These submanifolds have the same codimensions as S1,1, S̃1,1, S1,1 and Sn respectively.

Let h ∈ C∞(R×W,R). If j3h t A, then by Proposition A.2.6 j3h(R×W )∩A is a finite

collection of points. The same holds for Ã. If j3h t A the intersection is empty. Let

C := (α2)−1(∆(R)×W (2))∩A2. If j3
2((t, p), (t′, p′)) ∈ C, then t = t′ and p 6= p′ are both

nondegenerate singularities of ht. C ⊂ J3
2 (R×W,R) is a submanifold of codimension

2d+ 3 and hence if j3
2h t C, then j3

2(W ) ∩ C = ∅. The set of functions satisfying these

four conditions therefore are paths of generalized Morse functions with only finitely

many, generically unfolded birth-death-singularities which appear at different times.

Let B̃n := α−1
n (∆n(R) ∩Bn where ∆n(R) denotes the 1-dimensional diagonal in Rn. If

j1
2h t B̃

2, then j1
2h(R×W )∩B̃2 ⊂ J1

2 (R×W,R) is a submanifold of codimension 2d+2

and hence so is (j1
2h)−1(B̃2) ⊂ (R×W )2 which therefore is a finite collection of points.

So, if j1
2h t B̃

2 there are only finitely many times where ht has non-distinct critical

values. If there exists a t such that ht has three critical points p, p′, p′′ with the same

value, then j1
3h((R×W )3)∩B̃3 6= ∅. But B̃3 is a submanifold of codimension 3d+4 and

if j1
3h t B̃

3 the before-mentioned intersection is empty. If there is a t such that ht has 2

critical values with 2 preimages each, then j1
4h ∩ α

−1
4 (∆4(R)) ∩ (S2(W )× S2(W )) 6= ∅.

The submanifold α−1
4 (∆4(R))∩(S2(W )×S2(W )) has codimension 3+2(2d+1) = 4d+5

and again, if j1
4h t α

−1
4 (∆4(R)) ∩ (S2(W )× S2(W )), the corresponding intersection is

empty.

The final property to encode is that if ht has a birth-death-point, then critical values of ht
are distinct. Let ht have a birth-death-point and two critical points with the same value.

Then j3
3h∩α

−1
3 (∆3(R))∩ (S1,1×S2) would be nonempty. But α−1

3 (∆3(R))∩ (S1,1×S2)

is a submanifold of codimension 2 + d+ 1 + 2d+ 1 = 3d+ 4 and the same argument

as above applies.

So, let h : R ×W → R be a function that is constantly equal to h0 near {0} ×W and

equal to h1 near {1} ×W which satisfies:
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1. j3h is transverse to A, Ã,A and j3
2h is transverse to C

2. j1
2h is transverse to D2

3. j1
3h is transverse to D3 and j1

4h is transverse to α−1
4 (∆4(R)) ∩ (S2 × S2)

4. j3
3 is transverse to α−1

3 (∆3(R)) ∩ (S1,1 × S2).

By the relative relative Multijet-Transversality Theorem A.1.9 the set of such functions

h is residual and hence nonempty.





B
Miscellaneous

Lemma B.1. Let π : E → B be a Serre-fibration and let X be a CW -complex. Then

Map(X,E)→ Map(X,B) is a Serre-fibration.

Proof. Consider the following lifting problem for D a CW -complex:

{0} ×D

[0, 1]×D

Map(X,E)

Map(X,B).
f

F

We obtain the following diagram

{0} ×D ×X

[0, 1]×D ×X

E

B
f̂

F̂

97
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by f̂(t, d, x) := f(t, d)(x). Since E → B is a fibration and D is a CW -complex, the map

F̂ exists and we define F (t, d)(x) := F̂ (t, d, x).

Proposition B.2. Let j : X → Y be the inclusion of a subspace. Then the following are

equivalent:

1. j is a weak homotopy equivalence,

2. for every n ≥ 0 and every map G0 : Dn → Y such that G(Sn−1) ⊂ X , there exists

a homotopy Gλ starting with G0 such that G1(Dn) ⊂ X and Gλ(Sn−1) ⊂ X for all

λ ∈ [0, 1].

Proof. (2)⇒ (1): We show that G0 is homotopic relative to Sn−1 to a map G′1 into X

and invoke a standard lemma (e.g. [Gra75, p. 136]). Let G0 : Dn → Y be a map with

G0(Sn−1) ⊂ X . The map G0 is homotopic, relative to Sn−1, to the map

G′1
2

(x) :=

G0( x
‖x‖) ‖x‖ ≥ 1

2 ,

G0(2x) ‖x‖ ≤ 1
2 .

For λ ≥ 1
2 , define

G′λ(x) :=

G(2−2‖x‖)(2λ−1)

(
x
‖x‖

)
‖x‖ ≥ 1

2 ,

G2λ−1(2x) ‖x‖ ≤ 1
2 .

The other implication is likewise easy and not important for us.

Lemma B.3. Let Mm ⊂ Nn be a compact submanifold of codimension r = n−m. Then the

inclusionN\τ(M) ↪→ N is r−1-connected for τ(M) any small enough tubular neighbourhood

of M .

Proof. Let k ≤ r− 1 and f : (Dk, Sk−1)→ (N,N \M) be a map. This is homotopic to a

smooth map fs by the theorem of Stone-Weierstraß which in turn is homotopic to ft
which is transverse to M . Hence im f ∩M is a submanifold of dimension k − r < 0

and hence 0 = [f ] ∈ πk(N,N \M). The tubular neighbourhood statement follows

from compactness of M and the fact that ft has distance greater ε from M for some

ε > 0.

Lemma B.4 ([Kre99, Proposition 4], [HJ13, Proposition, Appendix III]). Let θ : B →
BO(m) be a tangential structure, with B of type Fn. Let Wm : M0  M1 be a θ-cobordism



Appendix B - Miscellaneous 99

and let M1 → B be n-connected. If n ≤ m
2 − 1, there exists a θ-cobordism W ′ : M0  M1

such that (W ′,M1) is n-connected. If furthermore M0 → B is also n-connected, there exists a

θ-cobordism W ′ : M0  M1 such that (W ′,Mi) is n-connected for i = 0, 1. Furthermore W ′

is θ-cobordant to W relative to the boundary.

Proof. We may perform surgery on the interior of W to turn W → B into an n-

connected. From the long exact sequence for the triple (B,W,Mi) we get that Mi ↪→W

is an isomorphism on πk for k ≤ n−1. It remains to show that it can be made surjective

on πn. Consider the sequence

πn(M0) πn(W ) πn(W,M0) πn−1(M0) πn−1(W )

πn(B)

c

a

b 0 ∼=

Since πn(W,M0) is a finitely generated Zπ1-module and b is surjective, we find ele-

ments x1, . . . , xl ∈ πn(W ) that are mapped to generators. Also, there are preimages

y1, . . . , yl ∈ πn(M0) of a(x1), . . . , a(xl). Let zi := xi − c(yi). Then the b(zi) still are

generators and a(zi) = 0. For this reason and by the Whitney embedding theorem one

can assume that zi are represented by embeddings ϕi with trivial normal bundle and

hence they can be surgered away. Therefore we get a cobordism W ′ such that (W ′,M0)

is n-connected and W ′ is obtained by performing n+ 1-surgeries on the interior of W .

Furthermore, a ◦ ϕi|Sn×{0} is nullhomotopic and hence it can be extended to a map

ϕ̃i : D
n+1 → B and we get a structure map Wϕi → B. So, W ′ is also a θ-cobordism.

We now do the same trick for M1 but we have to show that the connectivity of (W,M0)

is not destroyed if an n + 1-surgery is performed. Let ϕ : Sn × Dd−n ↪→ W be an

n+ 1-surgery embedding and let
◦
W := W \ im ϕ. We get

W
◦
W Wϕ

M0

d− n− 1-connected n-connected

n-connected
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Since d − n − 1 ≥ d
2 > n, the middle vertical map and hence M0 ↪→ Wϕ are n-

connected.

Lemma B.5. Let f : X → X be a map. Then there exists a long exact sequence

· · · → Hn(X)
f∗−1−→ Hn(X)

δ−→ Hn+1(Tf )
i∗−→ Hn+1(X)→ . . .

which is called the Wang sequence. This reduces to a short exact sequence

0 −→ Hn(X)f
δ−→ Hn+1(Tf )

i∗−→ Hn+1(X)f −→ 0

where Af denotes the coinvariants and Af the invariants of A with respect to f .

Proof. This is dual to [Hat02, Example 2.48]. Consider the quotient map q : (X× I,X×
∂I)→ (Tf , X). We have the following diagram:

. . . Hn(Tf ) Hn(X)

Hn+1(X × I,X × ∂I)

Hn+1(Tf , X)

coker(j∗) = (Hn(X)⊕Hn(x))/∆

Hn(X)

. . .

δ∼=

(a, b) 7→ b− a∼=

i∗

a 7→ f∗a− a

(q|X×{0})∗ ⊕ (q|X×{1})∗ = id⊕ f

δ

q∗∼=

where j∗ and the vertical map δ come from the long exact sequence for (X× I,X×∂I).

The dashed arrows give the desired sequence.
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